Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022 2023 cụm THCS huyện Nga Sơn Thanh Hóa

Nội dung Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022 2023 cụm THCS huyện Nga Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022-2023 cụm THCS huyện Nga Sơn Thanh Hóa Đề giao lưu HSG lần 3 lớp 7 môn Toán năm 2022-2023 cụm THCS huyện Nga Sơn Thanh Hóa Xin chào quý thầy cô giáo và các em học sinh lớp 7! Trong khuôn khổ chương trình học sinh giỏi, chúng ta sẽ có cơ hội tham gia vào đề giao lưu môn Toán lớp 7. Đề thi lần này bao gồm 05 câu hỏi, thời gian làm bài là 150 phút, không tính thời gian giao đề. Ngày thi đã được lên lịch vào ngày 23 tháng 02 năm 2023. Đề thi sẽ có đáp án, lời giải chi tiết và thang điểm để các em tham gia tự kiểm tra và cải thiện kiến thức của mình. Dưới đây là một số câu hỏi mẫu trong đề thi: Tìm x, y, z thỏa mãn: 4x + 3y = 4y + 3z và 2x + y = z + 14. Tìm số nguyên tố p sao cho p + 2, p + 6, p + 8, p + 14 đều là số nguyên tố. Tìm tất cả các số nguyên dương x, y thỏa mãn (x + y)^4 = 40x + 41. Cho tam giác ABC vuông cân tại A. Chứng minh MD = ME. Cho 100 99 98 97 A x 100x 100x 100x 100x 2122. Tính A khi x = 99. Đề thi sẽ đòi hỏi các em phải áp dụng kiến thức đã học để giải quyết các bài toán đa dạng và phức tạp. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và cải thiện hiệu suất học tập của mình. File Word chứa đầy đủ nội dung của bài thi đã được chuẩn bị sẽ được cung cấp cho quý thầy cô để chuẩn bị cho buổi kiểm tra sắp tới. Chúc các em học sinh lớp 7 thành công và đạt kết quả cao trong đề giao lưu HSG lần 3 môn Toán!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5, 6, 7 nhưng sau đó chia theo tỉ lệ 4, 5, 6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác DEF vuông cân tại D. Gọi G là trung điểm của EF. a) Chứng minh EDG = DFG. b) Lấy điểm H thuộc đoạn thẳng EG (H khác E và G). Kẻ các đường thẳng EI, FK lần lượt vuông góc với đường thẳng DH tại I và K. Chứng minh EI = DK và tam giác GIK vuông cân. + Cho tam giác MNP có NMP < 900. Vẽ ra phía ngoài tam giác MNP hai đoạn thẳng MQ vuông góc và bằng MN, MR vuông góc và bằng MP. Gọi I là trung điểm của NP. Chứng minh MI = 1/2.QR.
Đề học sinh năng khiếu Toán 7 năm 2022 - 2023 phòng GDĐT Thanh Thủy - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh năng khiếu môn Toán 7 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thanh Thủy, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm (16 câu – 08 điểm) kết hợp 60% tự luận (04 câu – 12 điểm), thời gian 120 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh năng khiếu Toán 7 năm 2022 – 2023 phòng GD&ĐT Thanh Thủy – Phú Thọ : + Có 2 hộp bút chì màu. Hộp thứ nhất có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có 8 bút chì màu đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác xuất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là? + Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D sao cho BD CD trên tia đối của tia CB lấy điểm E sao cho BD CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt các đường thẳng AB và AC lần lượt ở M và N. a) Chứng minh rằng: BM CN. b) Gọi K là giao điểm của BC và MN. Chứng minh K là trung điểm của MN. c) Từ K kẻ đường thẳng d vuông góc với MN.Chứng minh rằng đường thẳng d luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC. + Một cửa hàng có ba tấm vải dài tổng cộng 144m. Nếu cắt ở tấm thứ nhất đi 1 3 số vải; cắt ở tấm thứ hai đi 1 7 số vải và cắt ở tấm thứ ba đi 1 4 số vải thì số mét vải còn lại ở ba tấm bằng nhau. Tổng số mét vải của hai tấm thứ nhất và thứ hai khi chưa cắt là?
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Can Lộc - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi giao lưu học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Can Lộc, tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Can Lộc – Hà Tĩnh : + Cho tam giác ABC cân tại A, BH vuông góc với AC tại H. Trên cạnh BC lấy điểm M bất kỳ (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH a) Chứng minh ∆DBM = ∆FMB b) Chứng minh MD + ME = BH c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Gọi I là giao điểm BC với DK. Chứng minh DI = KI. + Có sáu túi lần lượt chứa 18, 19, 21, 23, 25 và 34 bóng. Một túi chỉ chứa bóng đỏ trong khi 5 túi kia chỉ chứa bóng xanh. Bạn Toán lấy ba túi, bạn Học lấy 2 túi. Túi còn lại chứa bóng đỏ. Biết lúc này bạn Toán có số bóng xanh gấp đôi số bóng xanh của học Học. Tìm số bóng đỏ trong túi còn lại. + Một hình hộp chữ nhật có chiều dài và chiều rộng lần lượt tỉ lệ với 3; 2. Biết chiều cao bằng 2cm và diện tích xung quanh bằng 40cm2. Tính thể tích của hình hộp chữ nhật trên. Cho biết 36 công nhân hoàn thành một công việc trong 15 ngày. Hỏi để hoàn thành công việc đó trong 9 ngày thì phải tăng cường thêm mấy công nhân? (Năng suất mỗi công nhân là như nhau).
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hà Đông – Hà Nội : + Cho đa thức A(x) = ax3 + bx2 + cx + d với a là số nguyên dương, biết: A(5) – A(4) = 2022. Chứng minh A(7) – A(2) là hợp số. + Trong một đợt phát động thu kế hoạch nhỏ, ba khối 6, 7, 8 thu được 2125kg giấy vụn. Trung bình mỗi học sinh khối 6, 7, 8 theo thứ tự thu được 1,5kg; 2kg; 2,5kg. Số học sinh khối 6 và khối 7 tỉ lệ với 3 và 2, số học sinh khối 7 và khối 8 tỉ lệ với 5 và 4. Tính số học sinh mỗi khối. + Cho tam giác ABC có A < 90°. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và MCN 1) Chứng minh rằng: AMC = ABN 2) Chứng minh: BN vuông góc CM 3) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN.