Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic Toán 7 năm 2021 2022 phòng GD ĐT Kinh Môn Hải Dương

Nội dung Đề Olympic Toán 7 năm 2021 2022 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề Olympic Toán 7 năm 2021-2022 phòng GD&ĐT Kinh Môn Hải Dương Đề Olympic Toán 7 năm 2021-2022 phòng GD&ĐT Kinh Môn Hải Dương Chào các thầy cô và các em học sinh lớp 7! Hôm nay, Sytu xin giới thiệu đến quý vị đề giao lưu Olympic cấp thị xã môn Toán lớp 7 năm học 2021-2022 do phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương tổ chức. Trong đề thi này, có những câu hỏi thú vị như: Tìm các số nguyên x và y biết: x + xy + y = 2. Chứng minh rằng nếu a^2 + b^2 + c^2 + d^2 chia hết cho 2 thì a + b + c + d là hợp số. Trong tam giác ABC nhọn, chứng minh các điều sau: CHI là tam giác cân. M là trung điểm của đoạn AK. B, O, M thẳng hàng. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng và chuẩn bị tốt cho các cuộc thi Olympic sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic tài năng trẻ Toán 7 năm 2018 - 2019 quận Đống Đa - Hà Nội
Đề thi Olympic tài năng trẻ Toán 7 năm 2018 – 2019 cụm trường THCS quận Đống Đa – Hà Nội gồm 01 trang với 4 câu tự luận, đề nhằm giao lưu và tuyển chọn các em học sinh giỏi môn Toán lớp 7 tại các trường THCS trên địa bàn quận Đống Đa, Hà Nội để tuyên dương, khen thưởng, thúc đẩy nâng cao chất lượng môn Toán 7.
Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).