Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội

Nội dung Đề Toán tuyển sinh vào năm 2019 trường THPT chuyên KHTN Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN, Hà Nội năm 2019 Trong kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên Khoa học Tự nhiên, Đại học Quốc gia Hà Nội năm 2019, môn Toán đã được tổ chức vào Chủ Nhật ngày 26 tháng 05. Đề thi bao gồm 4 bài toán dạng tự luận, thời gian làm bài được giới hạn trong 120 phút. Một trong những bài toán được trích dẫn từ đề tuyển sinh là về hình vuông ABCD và đường tròn (O) nội tiếp hình vuông ABCD. Để giải bài toán này, thí sinh cần chứng minh rằng năm điểm A, F, O, C, E cùng nằm trên một đường tròn. Tiếp theo, thí sinh cần chứng minh rằng giao điểm của đường thẳng FB và đường tròn (O) là trung điểm của đoạn thẳng BG. Bài toán còn yêu cầu chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O). Bài toán thứ hai yêu cầu tìm giá trị nhỏ nhất của biểu thức M = (x^2 + 4)/(y^2 + 1), với điều kiện 1 ≤ y ≤ 2, xy + 2 ≥ 2y. Cuối cùng, bài toán cuối cùng đưa ra một phương trình đối với các số nguyên x, y, và yêu cầu tìm tất cả các cặp số nguyên thỏa mãn phương trình đó. Đề Toán tuyển sinh vào lớp 10 trường THPT chuyên KHTN Hà Nội năm 2019 là một thách thức đối với các em học sinh làm Toán. Để đạt điểm cao trong kỳ thi, thí sinh cần chuẩn bị kỹ lưỡng và thực hành nhiều bài tập.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!
Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng tìm hiểu về đề kiểm tra khảo sát môn Toán để ôn thi tuyển sinh vào lớp 10 tại trường THCS & THPT Nguyễn Tất Thành, Hà Nội. Đề thi bao gồm 08 câu trả lời ngắn và 03 câu tự luận, thời gian làm bài là 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội: + Một chiếc máy bay cất cánh từ mặt đất với vận tốc 600 km/h, theo đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2 km/h. + Tính bán kính của hình thang cân ABCD có đáy bé AB = 2 cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức và kỹ năng giải toán. Chúc các em thành công!
Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề vào môn Toán (chuyên) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 chuyên môn Toán năm học 2022 – 2023 của trường THPT chuyên Lê Hồng Phong, Nam Định. Kỳ thi sẽ diễn ra vào ngày Thứ Năm, 26 tháng 05 năm 2022. Trích dẫn đề thi vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định: + Từ năm 2022, chúng ta có các số nguyên dương đầu tiên là 1, 2, 3, ..., 2022. Trong đó, n số phân biệt được chọn sao cho hiệu của bất kì hai số được chọn không phải là ước của tổng hai số đó. Chúng ta cần chứng minh rằng số lượng n số không vượt quá 674. + Đề bài còn liên quan đến việc kẻ hai tiếp tuyến MA và MB từ điểm M nằm ngoài đường tròn (O;R). Tiếp theo, chúng ta cần chứng minh các mệnh đề về tứ giác OHCD nội tiếp, ba điểm A, C, G thẳng hàng, và tính giá trị biểu thức T với điều kiện OM = 3R. + Cuối cùng, đề bài còn đưa ra phương trình liên quan đến số nguyên tố p có dạng 4k + 3. Chúng ta cần chứng minh mối quan hệ giữa a, b, và p trong cách chia hết, và áp dụng vào việc giải phương trình x^2 + 4x + 9y^2 = 58. Đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường chuyên Lê Hồng Phong Nam Định mang đến cho các em học sinh cơ hội thách thức và phát triển năng lực toán học của mình.
Đề vào môn Toán (chung) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề vào môn Toán (chung) năm 2022 2023 trường chuyên Lê Hồng Phong Nam Định Bản PDF - Nội dung bài viết Đề thi vào lớp 10 môn Toán trường chuyên Lê Hồng Phong Nam Định năm học 2022-2023 Đề thi vào lớp 10 môn Toán trường chuyên Lê Hồng Phong Nam Định năm học 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định. Đề thi được chia thành Đề 1 dành cho học sinh thi vào các lớp chuyên tự nhiên và Đề 2 dành cho học sinh thi vào các lớp chuyên xã hội. Kỳ thi sẽ được tổ chức vào thứ Tư ngày 25 tháng 05 năm 2022. Trích dẫn một số câu hỏi từ đề thi: + Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi I là trung điểm của BC và D là điểm đối xứng với A qua OM. Chứng minh tứ giác MAOI nội tiếp và tính MD2 = MB.MC. Tiếp tuyến tại B của (O) cắt OI tại F. Chứng minh tam giác OMI và OFH đồng dạng từ đó suy ra ba điểm A, D, F thẳng hàng. Chứng minh tứ giác BHOC nội tiếp và tính HB.MC = MB.HC. + Tìm toạ độ điểm M là giao điểm của đường thẳng y = 2x + 4 với trục Ox. + Biết hình tròn có chu vi là 47 cm. Tính diện tích hình tròn đó. Đề thi Toán môn chung năm 2022-2023 của trường chuyên Lê Hồng Phong Nam Định mang đến những câu hỏi thú vị, đa dạng và phong phú, giúp học sinh thử sức và chinh phục thách thức trong kỳ thi sắp tới.