Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 10 năm 2021 - 2022 trường chuyên Lương Thế Vinh - Đồng Nai

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi lớp 10 môn Toán chuyên năm học 2021 – 2022 trường THPT chuyên Lương Thế Vinh, tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề HSG Toán 10 năm 2021 – 2022 trường chuyên Lương Thế Vinh – Đồng Nai : + Biết rằng phương trình x3 – ax2 + bx – c = 0 có 3 nghiệm nguyên phân biệt, chứng minh rằng phương trình x2 – 2ax + 3b = 0 cũng có 2 nghiệm phân biệt là m và n. + Cho abc là một số nguyên tố có ba chữ số. Chứng minh phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Một nhóm học sinh gồm sáu em, trong đó có hai em lớp A, hai em lớp B và hai em lớp C. Mỗi ngày một lần, các em xếp thành một hàng dọc sao cho chỉ có đúng một cặp hai em cùng lớp đứng cạnh nhau. Biết rằng không có hai ngày có cách xếp giống nhau, vậy các em có thể xếp được nhiều nhất bao nhiêu ngày?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Lưu Hoàng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội gồm 01 trang với 05 câu tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Lưu Hoàng – Hà Nội : + Cho parabol 2 P y x bx c (b c là các tham số thực). a) Tìm giá trị của b c biết parabol P đi qua điểm M(3;2)  và có trục đối xứng là đường thẳng x 1. b) Với giá trị của b c tìm được ở câu a, tìm m để đường thẳng d y x m cắt parabol P tại hai điểm phân biệt AB sao cho tam giác OAB vuông tại O (với O là gốc tọa độ). + Trong mặt phẳng tọa độ Oxy, cho hai điểm A và B. Tìm tọa độ điểm C sao cho tam giác ABC vuông cân tại A. + Cho ba số thực x y z thỏa mãn x y z 1 1 1 và 1 1 1 2 x y z. Tìm giá trị lớn nhất của biểu thức A x y z 1 1 1.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Đan Phượng - Hà Nội
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Đan Phượng – Hà Nội : + Cho a, b, c là các số thực thỏa mãn: a b b c c a 8. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 2 2 2 P a b c. + Viết phương trình đường thẳng đi qua B(4;5) và tạo với đường thẳng 7 8 0 x y một góc 45°. + Cho tứ giác ABCD, AC và BD cắt nhau tại O. Gọi H, K lần lượt là trực tâm của tam giác ABO và CDO. Gọi M, N lần lượt là trung điểm của AD và BC. Chứng minh rằng HK MN.
Đề thi HSG Toán 10 năm 2020 - 2021 trường THPT Diễn Châu 2 - Nghệ An
Đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 10 năm 2020 – 2021 trường THPT Diễn Châu 2 – Nghệ An : + Cho tam giác ABC có trọng tâm G. Gọi E, F là các điểm thỏa mãn AE = 2AB, 5AF = 2AC. Chứng minh ba điểm G, E, F thẳng hàng. + Cho tam giác ABC có ba cạnh a, b, c (với b > c), biết nửa chu vi bằng 10, góc CAB = 60 độ. Bán kính đường tròn nội tiếp tam giác đó bằng 3. Tính độ dài đường trung tuyến ma. + Trong mặt phẳng (Oxy), cho tam giác ABC có A(3;4), trực tâm H(1;3) và tâm đường tròn ngoại tiếp tam giác ABC là I(2;0). Viết phương trình các đường thẳng AH và BC.