Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kỳ 1 Toán 9 năm 2018 - 2019 phòng GD và ĐT Quận 7 - TP. HCM

Đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Quận 7 – TP. HCM gồm 2 trang với 8 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 14 tháng 12 năm 2018. Trích dẫn đề kiểm tra học kỳ 1 Toán 9 năm 2018 – 2019 phòng GD và ĐT Quận 7 – TP. HCM : + Vào ngày lễ “Black Friday”, cửa hàng hoa của chị Hạnh đã quyết định giảm giá 20% cho một bó hoa hướng dương và nếu khách hàng mua 10 bó trở lên thì từ bó thứ 10 trở đi khách hàng sẽ chỉ phải trả một nửa giá đang bán. a) Một công ty muốn đặt hoa cho buổi khai trương, công ty đã đặt 30 bó hoa hướng dương. Tính tổng số tiền công ty phải trả, biết rằng giá bán ban đầu của một bó hoa hướng dương là 60.000 đồng. b) Một khách hàng đã mua hoa hướng dương ở tiệm chị Hạnh và tổng số tiền khách hàng này đã trả là 648.000 đồng. Hỏi khách hàng này đã mua bao nhiêu bó hoa? [ads] + Một người đang đi trên thuyền ở giữa biển cách ngọn hải đăng 150m và nhìn thấy ngọn hải đăng với góc nâng là 15 độ. Hỏi chiều cao của ngọn hải đăng là bao nhiêu? (kết quả làm tròn đến mét) + Cho rằng tỉ trọng người cao tuổi ở Việt Nam được xác định bởi hàm số R = 11 + 0,32t, trong đó R tính bằng %, t tính bằng số năm kể từ năm 2011. a. Hãy tính tỉ trọng người cao tuổi vào năm 2011 và 2050. b. Để chuyển từ giai đoạn già hóa dân số (tỉ trọng người cao tuổi chiếm 11%) sang giai đoạn dân số già (tỉ trọng người cao tuổi chiếm 20%) thì Australia mất 73 năm, Hoa Kỳ mất 69 năm, Canada mất 65 năm. Em hãy tính xem Việt Nam mất khoảng bao nhiêu năm? (làm tròn đến năm). Tốc độ già hóa của Việt Nam nhanh hay chậm so với các nước trên?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2018 2019 phòng GD và ĐT Sơn Tây Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2018 2019 phòng GD và ĐT Sơn Tây Hà Nội Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây Hà Nội Đề thi học kỳ 1 Toán lớp 9 năm học 2018 – 2019 phòng GD và ĐT Sơn Tây Hà Nội Đề thi học kỳ 1 môn Toán lớp 9 năm học 2018 - 2019 do phòng GD và ĐT Sơn Tây Hà Nội tổ chức bao gồm 5 bài toán tự luận. Thời gian làm bài là 90 phút, kỳ thi diễn ra vào ngày 15 tháng 12 năm 2018. Đây là một cơ hội để học sinh lớp 9 thể hiện kiến thức và kỹ năng Toán của mình sau một học kỳ đầu năm học. Bài thi cũng giúp giáo viên đánh giá được sự tiến bộ của học sinh trong môn học quan trọng này. Chúc các em học sinh lớp 9 có kì thi suôn sẻ và đạt kết quả cao trong bài thi Toán học kỳ 1 này!
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2018 2019 sở GD ĐT Vĩnh Phúc
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2018 2019 sở GD ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc Đề thi học kỳ 1 Toán lớp 9 năm học 2018 – 2019 sở GD&ĐT Vĩnh Phúc Chúng ta sẽ cùng tìm hiểu về đề thi học kỳ 1 môn Toán lớp 9 năm học 2018 – 2019 của sở GD&ĐT Vĩnh Phúc. Đề thi này bao gồm nhiều câu hỏi khó, thú vị và đa dạng, giúp các em học sinh rèn luyện kỹ năng giải toán một cách tỉ mỉ và chính xác. Một số câu hỏi đáng chú ý trong đề thi bao gồm: Cho hai hàm số bậc nhất y = 2x + 3k và y = (2m + 1)x + 2k – 3. Tìm các giá trị của m và k để đồ thị các hàm số là: Hai đường thẳng song song với nhau hoặc cắt nhau tại một điểm trên trục tung. Cho đường tròn (O; 6cm) và điểm M cách O một khoảng bằng 10cm. Qua M kẻ tiếp tuyến MA với đường tròn O (A là tiếp điểm). Tính độ dài đoạn thẳng AB, chứng minh MB là tiếp tuyến của đường tròn. Tìm giá trị nhỏ nhất của biểu thức được cho trong đề thi. Đây là một bài thi đầy thách thức và đồng thời là cơ hội để các em học sinh thể hiện khả năng giải quyết vấn đề và logic của mình. Hy vọng rằng các em sẽ có những bước tiến mới trong kiến thức và kỹ năng Toán của mình sau khi hoàn thành đề thi này.
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2017 2018 sở GD và ĐT Bến Tre
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2017 2018 sở GD và ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi Toán học kì 1 lớp 9 năm học 2017-2018 Sở GD và ĐT Bến Tre Đề thi Toán học kì 1 lớp 9 năm học 2017-2018 Sở GD và ĐT Bến Tre Đề thi Toán học kì 1 lớp 9 năm học 2017-2018 của Sở GD và ĐT Bến Tre bao gồm một trang đề với 5 bài toán tự luận. Thời gian làm bài là 90 phút, đề thi có lời giải chi tiết và thang điểm. Trong đề thi, có một số bài toán đặc sắc như: Bài toán về hàm số: Cho hàm số y = (2m + 1)x - 6 có đồ thị (d). Học sinh cần xác định giá trị của m để hàm số đồng biến trên toàn bộ miền xác định. Họ cũng phải tìm giá trị của m để đồ thị hàm số đã cho đi qua điểm A(1; 2) và vẽ đồ thị của hàm số khi m = -2. Bài toán về hình học: Học sinh cần tính số tầng của tòa nhà cao tầng dựa trên bóng của cột đèn và tòa nhà, với thông tin rằng mỗi tầng của tòa nhà cao 2m. Bài toán về tam giác vuông: Học sinh được yêu cầu tính độ dài của hai cạnh AB và AC của tam giác ABC vuông tại A, biết rằng góc ACB bằng 60 độ và CH = a. Đề thi Toán học kì 1 lớp 9 năm học 2017-2018 Sở GD và ĐT Bến Tre mang đến cho học sinh những bài toán đa dạng, giúp họ rèn luyện kỹ năng giải quyết vấn đề và tư duy logic.
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Tứ Kỳ Hải Dương
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm học 2017 2018 phòng GD và ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Bài 1: Hàm số bậc nhấtBài 2: Tam giác vuông ABC Đề thi học kì 1 môn Toán lớp 9 năm học 2017-2018 của phòng GD và ĐT Tứ Kỳ - Hải Dương đưa ra 5 bài toán tự luận, thời gian làm bài là 90 phút, đề thi có lời giải chi tiết. Bài thi bao gồm các câu hỏi sau: Bài 1: Hàm số bậc nhất Cho hàm số bậc nhất y = (k - 2)x + k^2 - 2k; (k là tham số) Vẽ đồ thị hàm số khi k = 1. Tìm k để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 2. Bài 2: Tam giác vuông ABC Cho tam giác ABC vuông tại A (AB > AC), có đường cao AH. Cho AB = 4cm; AC = 3cm. Tính độ dài các đoạn thẳng BC, AH. Vẽ đường tròn tâm C, bán kính CA. Đường thẳng AH cắt đường tròn (C) tại điểm thứ hai D. Chứng minh BD là tiếp tuyến của đường tròn (C). Qua C kẻ đường thẳng vuông góc với BC cắt các tia BA, BD thứ tự tại E, F. Trên cung nhỏ AD của (C) lấy điểm M bất kỳ, qua M kẻ tiếp tuyến với (C) cắt AB, BD lần lượt tại P, Q. Chứng minh: 2√PE.QF = EF. Đề thi mang tính thách thức và đòi hỏi sự kiên nhẫn, khả năng phân tích và giải quyết vấn đề của học sinh. Hy vọng rằng các em sẽ tự tin và làm tốt bài thi của mình.