Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Lâm Đồng

Thứ Sáu ngày 20 tháng 12 năm 2019, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm học 2019 – 2020. Đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng gồm 06 bài toán chung cho tất cả các thí sinh và 02 bài toán riêng cho thí sinh hệ THPT và hệ GDTX, đề thi gồm có 02 trang, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Lâm Đồng : + Một chiếc cốc hình trụ có bán kính đáy bằng 5cm và chiều cao 20cm bên trong có một khối lập phương cạnh 6cm như hình minh họa. Khi đổ nước vào cốc, khối lập phương sẽ nổi 1/3 thể tích của nó lên trên mặt nước (mặt trên khối lập phương song song với mặt nước). Tính thể tích lượng nước đổ vào cốc để mặt trên của khối lập phương ngang bằng với miệng cốc khi nó nổi lên (lấy π = 3,14). [ads] + Học sinh A thiết kể bảng điều khiển điện tử mở cửa phòng học của lớp mình. Bảng gồm 15 nút, mỗi nút được ghi một số từ 1 đến 15 và không có hai nút nào được ghi cùng một số. Để mở cửa cần nhấn ba nút khác nhau sao cho tổng các số trên ba nút đó là số chẵn. Học sinh B không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên ba nút khác nhau trên bảng điều khiển. Tính xác suất để B mở được cửa phòng học đó. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, SA vuông góc với mặt đáy, SB tạo với mặt đáy một góc 60°, điểm E thuộc cạnh SA và AE = a√3/3. Mặt phẳng (BCE) cắt SD tại F. Tính thể tích khối đa diện V_ABCDEF và khoảng cách giữa hai đường thẳng SD và BE.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Phú Thọ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi được biên soạn theo hình thức 40% tự luận kết hợp 60% trắc nghiệm, phần tự luận gồm 04 câu (08 điểm), phần trắc nghiệm gồm 40 câu (12 điểm), thời gian làm bài 180 phút. Trích dẫn Đề thi học sinh giỏi cấp tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = x3 – (m + 1)x + 4 − m cắt trục hoành tại ba điểm phân biệt có hoành độ lớn hơn -3. Cho x, y là hai số thực dương, tìm giá trị lớn nhất của biểu thức P. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = 2a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm cạnh AD. Tính khoảng cách từ điểm B đến mặt phẳng (SCM). Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình chữ nhật, AB = 6, AD = 3, A’C = 3 và mặt phẳng (ACC’A’) vuông góc với mặt phẳng đáy. Biết góc giữa hai mặt phẳng (ACC’A’) và (ADD’A’) là a thỏa mãn tana = 3/2. Tính thể tích của khối lăng trụ ABCD.A’B’C’D’. + Hai bạn Quý và Mão mỗi bạn chọn ngẫu nhiên một tập con khác rỗng từ tập E = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Tính xác suất để mỗi bạn chọn được một tập con có 3 phần tử và trong hai tập con đó có ít nhất hai phần tử giống nhau.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho hàm số f(x) = x3 − 3(m + 1)x2 + 3m(m + 2)x − 2 + m (1) (m là tham số). Tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) có các điểm cực trị đồng thời khoảng cách từ điểm cực đại đến trục hoành bằng khoảng cách từ điểm cực tiểu đến trục tung. + Cho đa giác đều (H) có 23 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác lập được thỏa mãn không có cạnh nào là cạnh của đa giác đều (H). + Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng a 2 và O là tâm của đáy. Gọi M, N, P và Q lần lượt là các điểm đối xứng của O qua các mặt phẳng (SAB), (SBC), (SCD) và (SDA). Tính thể tích của khối chóp S.MNPQ.
Đề thi học sinh giỏi tỉnh Toán 12 (chuyên) năm 2022 - 2023 sở GDĐT Thừa Thiên Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề thi học sinh giỏi tỉnh Toán 12 (chuyên) năm 2022 – 2023 sở GD&ĐT Thừa Thiên Huế : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x4 + 10×2 + 2y là một số chính phương. + Trên đường tròn (O) cho dây cung BC cố định không đi qua O và điểm A thay đổi sao cho A khác B, A khác C. Gọi D, E, F lần lượt là trung điểm của các đoạn thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi (Q) là đường tròn đi qua hai điểm D, M và tiếp xúc với đường tròn (O); d là tiếp tuyến của (Q) tại D. Gọi N, P lần lượt là giao điểm của d với các đường trung trực của DE và DF. Gọi H là giao điểm của NE và PF, G là trọng tâm của tam giác ABC. a) Chứng minh đường tròn (Q) tiếp xúc với đường tròn ngoại tiếp của tam giác DEF. b) Chứng minh khi A thay đổi trên (O) thì đường thẳng GH luôn đi qua một điểm cố định. + Cho n là một số nguyên dương. Một bảng n x n gồm n2 ô vuông đơn vị, mỗi ô được tô bởi một trong hai màu trắng hoặc đen, được gọi là bảng lồi nếu với mỗi ô được tô màu đen thì ô liền kề nằm bên trái nó hoặc bên trên nó (nếu có) đều được tô màu đen. Với a, b là hai ô vuông đơn vị bất kì của bảng, cặp gồm hai ô vuông (a;b) gọi là cặp đẹp nếu a được tô màu đen, b được tô màu trắng và cả hai đều nằm trên cùng một hàng hoặc cùng một cột của bảng. a) Với n = 3, hãy chỉ ra bảng lồi 3 × 3 gồm 6 ô đen và có số cặp đẹp lớn nhất. b) Tìm số cặp đẹp lớn nhất có thể của một bảng lồi n x n.
Đề thi học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Thừa Thiên Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 khối THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề thi học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Thừa Thiên Huế : + Cho hàm số y = x3 – 3mx2 + 3(m2 – 1)x + 2 có đồ thị là (Cm) với m là tham số thực. a) Chứng minh rằng đồ thị (Cm) luôn có hai điểm cực trị với mọi giá trị của m. b) Gọi A, B lần lượt là điểm cực đại, điểm cực tiểu của đồ thị (Cm); d là đường thẳng qua B vuông góc với trục tung và cắt đồ thị (Cm) tại C (C khác B). Chứng minh rằng diện tích tam giác ABC không phụ thuộc vào giá trị của m. + Một biển số xe có dạng “75A-abcde” với a, b, c, d, e là các chữ số mà trong đó có ít nhất một chữ số khác 0. Một biển số xe được gọi là biển số xe “thú vị” nếu các chữ số a, b, c, d, e đôi một khác nhau và không có hai chữ số nào có tổng bằng 10. Chọn ngẫu nhiên một biển số xe, tính xác suất chọn được biển số xe “thú vị”. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O với cạnh AB = a2, SA vuông góc (ABCD) và đường thẳng SC hợp với mặt phẳng (SAB) một góc bằng 30 độ. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi G là trọng tâm tam giác SBC. Tính khoảng cách giữa hai đường thẳng SA và DG theo a. c) Gọi M, N lần lượt là các điểm thuộc cạnh SA và SC sao cho MN song song với AC. Tìm giá trị lớn nhất của thể tích khối tứ diện MNBD theo a.