Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 2 năm học 2022 – 2023 trường THCS Tây Mỗ, quận Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 02 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 tháng 2 năm 2023 trường THCS Tây Mỗ – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất phải may được 2200 chiếc áo trong một ngày. Do tổ 1 làm vượt mức kế hoạch 12%, tổ hai làm vượt mức kế hoạch 10% nên cả hai tổ đã may vượt mức được 240 chiếc áo. Hỏi theo kế hoạch, mỗi tổ phải may được bao nhiêu áo trong một ngày. + Tính chiều cao của một cột cờ, biết bóng của cột cờ trên mặt đất dài 11,6m và góc tạo bởi tia nắng mặt trời với mặt đất là 36°50′ (làm tròn đến số thập phân thứ nhất). + Cho đường tròn (O) và điểm C nằm ngoài (O). Từ C kẻ hai tiếp tuyến CA, CB với (O) (A, B là tiếp điểm). a) Chứng minh bốn điểm O; A; B; C cùng thuộc một đường tròn. b) Qua C kẻ cát tuyến CDE đến (O) (D nằm giữa C và E). Chứng minh: AC2 = CD.CE. c) Gọi K là trung điểm của DE, đường thẳng BK cắt đường tròn (O) tại Q. 1. Chứng minh rằng AQ // DE. 2. Chứng minh khi cát tuyến CDE thay đổi thì trọng tâm G của tam giác ADE luôn chạy trên một đường tròn cố định.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Nguyễn Trường Tộ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Nguyễn Trường Tộ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024.
Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 hệ thống giáo dục Archimedes School, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 01 năm 2024. Trích dẫn Đề kiểm tra Toán 9 tháng 1 năm 2024 hệ thống giáo dục Archimedes School – Hà Nội : + Một người dự định đi từ thành phố A đến thành phố B với vận tốc và thời gian đã định. Nếu người đó đi từ A với vận tốc lớn hơn vận tốc dự định 5 km/h thì sẽ đến B sớm hơn dự định 30 phút. Nếu người đó đi từ A với vận tốc nhỏ hơn vận tốc dự định 4 km/h thì sẽ đến B muộn hơn dự định 30 phút. Hỏi vận tốc và thời gian dự định ban đầu của người đó? + Cho parabol (P): y = x2 và đường thẳng d: y = x + 2. a) Vẽ (P) và (d) trên cùng mặt phẳng tọa độ xOy. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép toán. + Cho đường tròn tâm O đường kính AB. Vẽ đường thẳng d là tiếp tuyến với (O) tại A, trên d lấy điểm C sao cho AC < AB. Vẽ cát tuyển CDE tới (O) (CDE nằm giữa CA và CO). Nối BD cắt CO tại M. Gọi H là hình chiếu của A lên CO. 1) Chứng minh: 4 điểm A, D, H, M cùng thuộc một đường tròn. 2) Chứng minh CA2 = CD.CE. 3) Kéo dài tia EO cắt (O) tại K (K khác E). Chứng minh CDH đồng dạng COE và ba điểm A, M, K thẳng hàng.
Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Thành Công - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 1 năm học 2023 – 2024 trường THCS Thành Công, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề khảo sát Toán 9 tháng 1 năm 2024 trường THCS Thành Công – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai đội công nhân cùng làm chung một công việc thì sau 12 ngày làm xong. Nếu đội I làm riêng trong 4 ngày rồi dừng lại và đội II làm tiếp công việc đó trong 14 ngày thì cả hai đội hoàn thành công việc. Hỏi nếu mỗi đội làm riêng thì sau bao nhiêu ngày sẽ hoàn thành xong công việc trên? + Cho hệ phương trình. a) Tìm m để hệ phương trình có nghiệm duy nhất. b) Tìm m sao cho nghiệm duy nhất của hệ phương trình đã cho thỏa mãn: x + 2y = 2. + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O (AB < AC), đường cao AH cắt đường tròn (O) tại điểm thứ hai là M. Kẻ đường kính AD của (O). Chứng minh rằng: a) AM vuông góc MD. b) ABH đồng dạng với ADC. Từ đó suy ra BM = DC. c) Tứ giác BMDC là hình thang cân.
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Thủy Nguyên - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Thủy Nguyên, thành phố Hải Phòng; đề thi gồm 02 trang với 06 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Thủy Nguyên – Hải Phòng : + Giá 01 quyển vở là 8 000 (đồng), 01 quyển sách 59 000 (đồng). Nam muốn mua 01 quyển sách và một số quyển vở. Gọi x là số vở Nam mua và y (đồng) là số tiền phải trả (bao gồm tiền mua vở và 1 quyển sách) (x thuộc N*). a. Hãy biểu diễn y theo x. b. Nếu bạn Nam có 119 000 (đồng) để mua 01 quyển sách và vở thì bạn Nam có thể mua được tối đa bao nhiêu quyển vở? + Một vườn trường hình chữ nhật trước đây có chu vi 120m. Nhà trường đã mở rộng chiều dài thêm 5m và chiều rộng thêm 3m, do đó diện tích vườn trường đã tăng thêm 245m2. Tính chiều dài và chiều rộng của vườn lúc đầu. + Một bồn đựng nước có dạng hình hộp chữ nhật có các kích thước cho trên hình. a) Tính diện tích bề mặt của bồn (không tính nắp). b) Một vòi bơm với công suất 120 lít/phút để bơm một lượng nước vào bồn lên độ cao cách nắp bồn là 1,5m thì phải mất bao lâu (bồn không chứa nước)?