Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán năm 2022 2023 trường THCS Phan Ngọc Hiển Cà Mau

Nội dung Đề thi HSG lớp 9 môn Toán năm 2022 2023 trường THCS Phan Ngọc Hiển Cà Mau Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 năm 2022 - 2023 trường THCS Phan Ngọc Hiển - Cà Mau Đề thi HSG Toán lớp 9 năm 2022 - 2023 trường THCS Phan Ngọc Hiển - Cà Mau Xin chào quý thầy cô và các bạn học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau. Đề thi này bao gồm nhiều câu hỏi thú vị và thách thức, hướng dẫn cụ thể cách giải và thang điểm chi tiết để giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả. Dưới đây là một số ví dụ câu hỏi trong đề thi: 1. Ông Huy có 24m hàng rào muốn rào một sân vườn hình chữ nhật sao cho diện tích lớn nhất. Hỏi kích thước sân vườn đó? 2. Tứ giác ABCD có độ dài hai đường chéo là m và n. Chứng minh diện tích S của tứ giác ABCD là 1/2 mn.sin(2α). 3. Cho đường tròn (O) đường kính AB, điểm C nằm giữa A và O. Tiếp theo là câu hỏi về chứng minh tứ giác ADCE là hình thoi, ba điểm E, C, K thẳng hàng, và một số yêu cầu khác liên quan đến đường tròn và hình học. Hy vọng rằng, việc ôn tập và giải đề thi này sẽ giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Ba Vì – Hà Nội : + Cho tam giác ABC cân tại A có ABC = 𝛼. Gọi I là trung điểm của BC. Trên cạnh AB, AC lấy M, N sao cho MIN = 𝛼. Chứng minh rằng: a) Tam giác BMI đồng dạng với tam giác CIN. Từ đó suy ra BM.CN không đổi. b) NI là tia phân giác của MNC. + Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M trên AC, AB a) Tìm vị trí của M để DE có độ dài nhỏ nhất. b) Tam giác ABC có thêm điều kiện gì để với mọi vị trí của M nằm giữa B và C thì các hình chữ nhật ADME có chu vi bằng nhau. + Cho a, b là các số nguyên, chứng minh rằng: 42 24 Q a b a b ab ab chia hết cho 6.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Lộc Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lộc Hà, tỉnh Hà Tĩnh; đề thi gồm 10 câu ghi kết quả và 03 câu tự luận; thời gian làm bài 120 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Lộc Hà – Hà Tĩnh : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 26cm; BH = 2cm. Tính sin BAH. + Cho đường tròn (O;R). Hai dây AB và CD song song nhau. Biết AB = 16 cm, CD = 12 cm, khoảng cách giữa hai dây là 14 cm. Tính R. + Cho đường tròn (O;R) cố định và điểm M ở ngoài (O). Từ M vẽ các tiếp tuyến MA, MB và cát tuyến MCD (C nằm giữa M và D). Gọi I là trung điểm của CD, H là giao điểm của AB và OM, N là giao điểm của AB và CD. a) Chứng minh AM2 = MN.MI. b) Từ O vẽ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Xác định vị trí của M để diện tích tam giác MPQ có giá trị nhỏ nhất.
Đề HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch chuyên bán cá thính (đặc sản của huyện Lập Thạch, tỉnh Vĩnh Phúc). Cửa hàng có hai hình thức đóng thùng, loại I mỗi thùng gồm 10 hộp cá thính và loại II mỗi thùng gồm 5 hộp cá thính. Trong tháng 9 vừa qua cửa hàng bán buôn được 60 thùng cá thính (gồm cả loại I và loại II) thu về tổng cộng 55 triệu đồng. Biết rằng giá bán mỗi thùng cá thính loại I tính theo triệu đồng là một số nguyên dương và gấp đôi giá bán mỗi thùng cá thính loại II. Hỏi giá bán mỗi thùng cá thính loại I là bao nhiêu triệu đồng? + Lần lượt lấy trên các cạnh AB, BC, CA của tam giác ABC các điểm P, M, N. Gọi S, S1, S2, S3 lần lượt là diện tích các tam giác ABC, APN, BMP, CMN. Chứng minh rằng: S1.S2.S3. + Cho một đa giác đều có 2023 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2. Biết rằng có 1013 số 1 và 1010 số 2 và các số trên 3 đỉnh liên tiếp bất kỳ không đồng thời bằng nhau. Hãy tính S là tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Ứng Hòa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho biểu thức P. a) Tìm điều kiện của x để biểu thức P có nghĩa. Rút gọn biểu thức P. b) Tìm giá trị nguyên của x để biểu thức P nhận giá trị nguyên. + Cho tam giác ABC vuông tại A có AB < AC. Kẻ đường cao AH (H thuộc BC), phân giác AM (M thuộc BC). Kẻ ME vuông góc với AB tại E; MF vuông góc với AC tại F. 1/ Cho AB = 9cm, AC = 12cm. Tính độ dài đoạn thẳng BC và AH. 2/ Chứng minh BE.BA = BH.BM và HE là tia phân giác góc AHB. 3/ Chứng minh rằng BE HB CF HC. + Trong tuần, mỗi ngày bạn Việt Nam chỉ chơi một môn thể thao, bạn chạy ba ngày một tuần nhưng không bao giờ chạy trong hai ngày liên tiếp. Vào thứ Hai, bạn chơi bóng bàn và hai ngày sau đó bạn lại chơi bóng đá. Ngoài ra bạn còn đi bơi và chơi cầu lông, nhưng không bao giờ chơi cầu lông ngay sau ngày chạy hoặc đi bơi. Hỏi ngày nào trong tuần bạn ấy đi bơi?