Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Khảo sát Toán tuyển sinh năm 2019 2020 trường Trương Công Định Hải Phòng

Nội dung Khảo sát Toán tuyển sinh năm 2019 2020 trường Trương Công Định Hải Phòng Bản PDF Đề khảo sát môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 - 2020 của trường THCS Trương Công Định ở Hải Phòng đưa ra các bài toán phức tạp, đòi hỏi học sinh phải áp dụng kiến thức toán học một cách linh hoạt và chính xác để giải quyết.

Trong đó, bài toán đầu tiên yêu cầu học sinh tìm tọa độ giao điểm giữa parabol và đường thẳng, sau đó đưa ra điều kiện để đường thẳng cắt parabol tại hai điểm phân biệt nằm cùng phía bên phải trục tung. Bài toán này không chỉ cần kiến thức căn bản về parabol mà còn đòi hỏi học sinh phải lưu ý đến điều kiện vị trí của hai đường thẳng và parabol để tìm ra đáp án chính xác.

Bài toán thứ hai liên quan đến việc áp dụng quy định về xử phạt vi phạm tốc độ giao thông để giải quyết vấn đề thực tế. Học sinh cần tính toán vận tốc của hai xe ô tô trên đường cao tốc và xác định xem liệu có xe nào vi phạm tốc độ hay không. Nếu có vi phạm, họ cần tính toán mức xử phạt tiền theo quy định của pháp luật. Bài toán này không chỉ giúp học sinh hiểu về quy định giao thông mà còn rèn luyện kỹ năng tính toán và suy luận.

Cuối cùng, bài toán cuối cùng yêu cầu học sinh tính diện tích xung quanh của hình trụ được tạo ra từ việc quay hình chữ nhật. Đây là một bài toán đòi hỏi học sinh phải áp dụng kiến thức về hình học không gian để giải quyết, từ đó phát triển kỹ năng về tính toán và suy luận.

Tổng thể, bài khảo sát Toán tuyển sinh năm 2019 - 2020 của trường Trương Công Định ở Hải Phòng đưa ra các bài toán đa dạng, đòi hỏi học sinh phải sử dụng nhiều khía cạnh của kiến thức toán học để giải quyết. Đồng thời, bài toán cũng giúp học sinh nhận thức về thực tế và áp dụng kiến thức vào cuộc sống hàng ngày.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Thái Bình (đề chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2/2 và hai đường thẳng (d1): y = 5x + 2, (d2): y = (m^2 + 1)x + m (với m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Tìm m để (d2) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho Q = x1 + x2 – 4x1x2 đạt giá trị nhỏ nhất. + Cho phương trình x^2 – 2(m + 1)x + m^2 – 3m = 0 (với m là tham số). 1. Giải phương trình với m = 0. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: (x1 + 2)(x2 + 2) = 10. [ads] + Cho đường tròn (O;R) đường kính AB. Trên tia AB lấy điểm C nằm ngoài đường tròn, kẻ đường thẳng d vuông góc với AB tại C. Gọi E là trung điểm của đoạn thẳng OB, đường thẳng đi qua E cắt đưòng tròn (O) ở M và N (M khác A và B). Tia AM, AN thứ tự cắt d ở P và Q. 1. Chứng minh tứ giác BCPM nội tiếp. 2. Chứng minh AM.AP = AN.AQ. 3. Giả sử MN = 7R/4. Tính độ dài đoạn ME, NE theo R. 4. Cho A, B, C cố định. Chứng minh rằng khi MN quay quanh điểm E (M khác A và B) thì tâm của đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường thẳng cố định.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT TP HCM
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. + Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, E, F. Kẻ đường kính EJ của đường tròn (I). Gọi d là đường thẳng qua A song song với BC. Đường thẳng JD cắt d, BC lần lượt tại L, H. a) Chứng minh: E, F, L thẳng hàng. b) JA, JF cắt BC lần lượt tại M, K. Chứng minh: MH vuông góc MK. [ads] + Cho tam giác nhọn ABC (AB < BC < CA) nội tiếp đường tròn (O). Từ A kẻ đường thẳng song song với BC cắt (O) tại A1. Từ B kẻ đường thẳng song song với AC cắt (O) tại B1. Từ C kẻ đường thẳng song song với AB cắt (O) tại C1. Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.