Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 9

Tài liệu gồm 666 trang, tóm tắt lý thuyết, các dạng toán và bài tập môn Toán 9, có đáp án và lời giải chi tiết. Phần I Đại số. Chương 1. Căn bậc hai – Căn bậc ba 2. 1. Căn bậc hai 2. 2. Căn thức bậc hai và hằng đẳng thức √A2 = |A| 9. 3. Liên hệ giữa phép nhân và phép khai phương 16. 4. Liên hệ giữa phép chia và phép khai phương 23. 5. Biến đỗi đơn giản biểu thức chứa căn thức bậc hai 32. 6. Rút gọn biểu thức chứa căn bậc hai 43. 7. Căn bậc ba 57. 8. Ôn tập chương 1 64. 9. Giới thiệu đề kiểm tra 1 tiết chương 1 97. Chương 2. Hàm số bậc nhất 105. 1. Khái niệm hàm số. Hàm số bậc nhất 105. 2. Đồ thị hàm số bậc nhất 117. 3. Đường thẳng song song và đường thẳng cắt nhau 129. 4. Hệ số góc của đường thẳng y = ax + b (a khác 0) 137. 5. Ôn tập chương 2 141. 6. Đề kiểm tra chương 2 171. Chương 3. Hệ hai phương trình bậc nhất hai ẩn 174. 1. Phương trình bậc nhất hai ẩn. Hệ hai phương trình bậc nhất hai ẩn 174. 2. Phương pháp giải hệ phương trình 180. 3. Giải bài toán bằng cách lập hệ phương trình 196. 4. Ôn tập chương 3 211. 5. Đề kiểm tra 1 tiết 236. Chương 4. Hàm số y = ax2 (a khác 0). Phương trình bậc hai một ẩn 240. 1. Hàm số và đồ thị hàm số y = ax2 (a khác 0) 240. 2. Phương trình bậc hai một ẩn và công thức nghiệm 249. 3. Hệ thức Vi-ét và ứng dụng 262. 4. Phương trình quy về phương trình bậc hai 275. 5. Giải toán bằng cách lập phương trình 310. 6. Ôn tập chương 4 326. 7. Đề kiểm tra 45 phút 344. Phần II Hình học. Chương 1. Hệ thức lượng trong tam giác vuông 349. 1. Hệ thức lượng và đường cao 349. 2. Tỷ số lượng giác của góc nhọn 363. 3. Hệ thức về cạnh và góc trong tam giác vuông 369. 4. Ôn tập chương 378. 5. Đề kiểm tra 45 phút 409. Chương 2. Đường tròn 427. 1. Sự xác định đường tròn. Tính chất đối xứng của đường tròn 427. 2. Đường kính và dây của đường tròn 439. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây 448. 4. Vị trí tương đối của đường thẳng và đường tròn 456. 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn 462. 6. Tính chất của hai tiếp tuyến cắt nhau 470. 7. Vị trí tương đối của hai đường tròn 481. 8. Ôn tập chương 2 494. Chương 3. Góc với đường tròn 515. 1. Góc ở tâm. Số đo cung 515. 2. Liên hệ giữa cung và dây 520. 3. Góc nội tiếp 526. 4. Góc tạo bởi tia tiếp tuyến và dây cung 534. 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn 548. 6. Cung chứa góc 558. 7. Tứ giác nội tiếp 568. 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp 581. 9. Độ dài đường tròn, cung tròn 588. 10. Ôn tập chương III 595. Chương 4. Hình trụ – Hình nón – Hình cầu 620. 1. Hình trụ. Diện tích xung quanh và thể tích hình trụ 620. 2. Hình nón – Hình nón cụt – Diện tích xung quanh và thể tích của hình nón, hình nón cụt 627. 3. Hình cầu – Diện tích mặt cầu và thể tích hình cầu 634. 4. Ôn tập chương IV 640.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề giải toán bằng cách lập hệ phương trình
Nội dung Chuyên đề giải toán bằng cách lập hệ phương trình Bản PDF - Nội dung bài viết Chuyên đề giải toán bằng cách lập hệ phương trình Chuyên đề giải toán bằng cách lập hệ phương trình Tài liệu Chuyên đề giải toán bằng cách lập hệ phương trình bao gồm 84 trang được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải toán bằng cách lập hệ phương trình, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 5 - 6. A. KIẾN THỨC TRỌNG TÂM Bước 1: Lập hệ phương trình: - Chọn ẩn, đơn vị cho ẩn và đặt điều kiện thích hợp cho chúng. - Biểu diễn các đại lượng chưa biết trong bài toán theo ẩn (chú ý đơn vị). - Dựa vào các dữ kiện, điều kiện của bài toán để lập hệ phương trình. Bước 2: Giải hệ phương trình. Bước 3: Nhận định, so sánh kết quả nghiệm của hệ phương trình với điều kiện bài toán. Kết luận, trả lời, nêu rõ đơn vị của đáp số. B. CÁC DẠNG TOÁN Dạng 1: Bài toán chuyển động. - Dạng chuyển động ngược chiều. - Dạng chuyển động cùng chiều. - Dạng chuyển động cùng chiều và ngược chiều. - Dạng toán thay đổi vận tốc trên đường đi. Dạng 2: Bài toán liên quan đến số học. - Dạng số có hai chữ số. - Dạng tỷ số, tuổi tác. Dạng 3: Bài toán về dân số, lãi suất ngân hàng, tăng trưởng. Dạng 4: Bài toán về công việc làm chung, làm riêng; vòi nước chảy chung chảy riêng. - Dạng vòi nước. - Dạng cùng làm chung công việc. Dạng 5: Bài toán có liên quan đến nội dung hình học. Dạng 6: Bài toán có liên quan đến nội dung vật lý, hoá học. Dạng 7: Bài toán khác. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU TỰ LUYỆN TỔNG HỢP CHUNG Dạng 1: Dạng toán tìm số. Dạng 2: Tìm toán chuyển động. Dạng 3: Dạng toán công việc làm chung làm riêng, vòi nước. Dạng 4: Dạng toán tỉ lệ phần trăm (%), năng xuất. Dang 5: Dạng toán sử dụng các kiến thức vật lý, hóa học.
Chuyên đề giải hệ phương trình bậc nhất hai ẩn
Nội dung Chuyên đề giải hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề giải hệ phương trình bậc nhất hai ẩn Chuyên đề giải hệ phương trình bậc nhất hai ẩn Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ và bao gồm 41 trang. Tài liệu tổng hợp kiến thức trọng tâm, phân loại và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm trong chuyên đề giải hệ phương trình bậc nhất hai ẩn. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 9, chương 3 bài 3-4. KIẾN THỨC TRỌNG TÂM a. Phương pháp thế: - Bước 1: Xác định biểu thức của ẩn x hoặc y bằng cách thế vào phương trình còn lại. - Bước 2: Giải phương trình bậc nhất một ẩn mới tìm được. - Bước 3: Tìm giá trị của ẩn còn lại bằng cách thay giá trị đã tìm được vào biểu thức ban đầu. b. Phương pháp cộng đại số: - Bước 1: Chọn ẩn cần khử (thường là x hoặc y). - Bước 2: Xem xét và cộng hoặc trừ các phương trình để loại bỏ ẩn đã chọn. - Bước 3: Giải phương trình với một ẩn và một phương trình ban đầu. CÁC DẠNG TOÁN Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Sử dụng phương pháp đặt ẩn phụ. Dạng 4: Các bài toán liên quan. BÀI TẬP TỰ LUYỆN
Chuyên đề hệ hai phương trình bậc nhất hai ẩn
Nội dung Chuyên đề hệ hai phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ hai phương trình bậc nhất hai ẩn Chuyên đề hệ hai phương trình bậc nhất hai ẩn Tài liệu này gồm 38 trang và được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức trọng tâm về hệ hai phương trình bậc nhất hai ẩn và cung cấp hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm. Tài liệu này đặc biệt hữu ích cho học sinh đang học chương trình Đại số 9, đặc biệt là trong chương 3 bài số 2. Trong tài liệu, bạn sẽ tìm hiểu về các kiến thức trọng tâm như hệ hai phương trình bậc nhất hai ẩn, minh họa hình học của nghiệm của hệ phương trình, và hệ phương trình tương đương. Ngoài ra, tài liệu cũng cung cấp các dạng bài tập minh họa như đoán nhận số nghiệm của hệ phương trình, giải hệ phương trình bằng phương pháp hình học, và hai hệ phương trình tương đương. Ngoài ra, có phần trắc nghiệm để rèn luyện kỹ năng và bài tập tự luyện để củng cố kiến thức. Tất cả những nội dung này sẽ giúp bạn hiểu rõ và tự tin hơn khi giải các bài toán liên quan đến hệ hai phương trình bậc nhất hai ẩn.
Chuyên đề đồ thị hàm số y = ax + b (a khác 0)
Nội dung Chuyên đề đồ thị hàm số y = ax + b (a khác 0) Bản PDF - Nội dung bài viết Chuyên Đề Đồ Thị Hàm Số y = ax + b (a khác 0) Chuyên Đề Đồ Thị Hàm Số y = ax + b (a khác 0) Tài liệu này bao gồm 46 trang, được viết bởi tác giả có tên là Toán Học Sơ Đồ. Nó tập trung vào các kiến thức quan trọng, cung cấp các dạng bài tập tự luận và trắc nghiệm liên quan đến đồ thị của hàm số y = ax + b (với điều kiện a khác 0), nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 9, chương 2, bài số 3. A. Kiến Thức Cần Nhớ: Đồ thị của hàm số bậc nhất Cách vẽ đồ thị của hàm số bậc nhất Chú ý đặc biệt khi giải các bài toán liên quan đến đồ thị hàm số bậc nhất B. Các Dạng Bài Tập Minh Họa: Vẽ đồ thị của hàm số bậc nhất Tìm giá trị của tham số m để hàm số trở thành hàm số bậc nhất, đồng biến hoặc nghịch biến Xác định tính đồng quy của ba đường thẳng Tìm điểm cố định của đường thẳng phụ thuộc vào tham số Tính chu vi và diện tích tam giác C. Trắc Nghiệm Rèn Phản Xạ: Phần này giúp học sinh tự kiểm tra kiến thức của mình và rèn luyện kỹ năng giải bài tập một cách linh hoạt và chính xác.