Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT quốc gia môn Toán năm 2017 THPT chuyên biên hòa lần 1 mã 1

Nguồn: onluyen.vn

Xem

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường Thanh Chương 1 - Nghệ An
Chủ Nhật ngày 21 tháng 06 năm 2020, trường THPT Thanh Chương 1, tỉnh Nghệ An tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường Thanh Chương 1 – Nghệ An gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 201, 202, 203, 204, 205, 206, 207, 208. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường Thanh Chương 1 – Nghệ An : + Lớp 12E trường THPT Thanh Chương 1 (tỉnh Nghệ An) có 35 học sinh, trong đợt làm hồ sơ xét tuyển đại học năm 2020, có 15 học sinh đăng ký xét tuyển khối A, 20 học sinh đăng ký xét tuyển khối B và 5 học sinh không làm hồ sơ đăng ký xét tuyển đại học. Nhà trường gọi ngẫu nhiên 5 học sinh trong số học sinh có làm hồ sơ xét tuyển đại học của lớp 12E lên để hướng dẫn làm hồ sơ mẫu. Xác suất để trong 5 học sinh được gọi có đúng 2 học sinh làm hồ sơ xét tuyển đại học cả hai khối A và B bằng? [ads] + Người ta muốn tạo một hình trụ bằng cách cắt tấm tôn hình chữ nhật ABCD thành hai hình chữ nhật, hình chữ nhật ADFE cuộn tròn thành mặt xung quanh của hình trụ, hình chữ nhật BCFE cắt thành hai hình tròn bằng nhau để làm hai đáy của hình trụ (tham khảo hình vẽ bên). Biết thể tích của khối trụ tạo thành bằng 27pi/2, diện tích của tấm tôn hình chữ nhật ABCD bằng? + Để trả tiền lương cho công nhân, số tiền công ty X sử dụng trong năm 2020 là 2 tỷ đồng. Biết rằng sau mỗi năm thì số tiền dùng để trả lương cho công nhân tăng 8% so với năm trước. Hỏi năm nào dưới đây là năm đầu tiên mà tổng số tiền công ty X dùng để trả lương cho công nhân trong năm đó lớn hơn 3 tỷ đồng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên Hạ Long - Quảng Ninh
Ngày … tháng 06 năm 2020, trường THPT chuyên Hạ Long, tỉnh Quảng Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên Hạ Long – Quảng Ninh mã đề 268 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề thi bám sát đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên Hạ Long – Quảng Ninh : + Gọi S là tập tất cả các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có tận cùng là 3 và chia hết cho 7 (làm tròn đến chữ số hàng nghìn) có dạng 0,abc. Tính a^2 + b^2 + c^2. + Cho miếng bìa hình chữ nhật ABCD có AB = 6, AD = 9. Trên cạnh AD lấy điểm E sao cho AE = 3. Gọi F là trung điểm của BC. Cuốn miếng bìa sao cho AB trùng CD để tạo thành một hình trụ. Tính thể tích của tứ diện ABEF. [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z + 1)^2 = 49 và mặt phẳng (a): -2mx + (3 – 2m)y + (2m – 1)z + 2m – 2 = 0 (m là tham số). Mặt phẳng (a) cắt (S) theo một đường tròn có diện tích nhỏ nhất là?
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GDĐT Hà Nội
Nhằm giúp học sinh khối 12 ôn tập để hướng đến kỳ thi tốt nghiệp THPT 2020 môn Toán, tối thứ Bảy ngày 19 tháng 06 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tiếp tục tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 lần thứ hai năm học 2019 – 2020; kỳ thi được diễn ra theo hình thức thi trực tuyến (online), học sinh sẽ biết được đáp án và điểm số sau khi hoàn thành bài thi. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GD&ĐT Hà Nội được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT; đáp án và lời giải chi tiết của đề thi sẽ được cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 sở GD&ĐT Hà Nội : + Cho 3 mặt cầu có tâm lần lượt là O1, O2, O3 đôi một tiếp xúc ngoài với nhau và cùng tiếp xúc với mặt phẳng (P) lần lượt tại A1, A2, A3. Biết rằng A1A2 = 6, A1A3 = 8, A2A3 = 10. Thể tích khối đa diện lồi có các đỉnh 1O1, O2, O3, A1, A2, A3 bằng? + Cho hàm số y = f(x), chọn khẳng định đúng? A. Nếu f'(x) đổi dấu khi x qua điểm x0 và f(x) liên tục tại x0 thì hàm số y = f(x) đạt cực trị tại điểm x0. B. Hàm số y = f(x) đạt cực trị tại x0 khi và chỉ khi f'(x0) = 0. C. Nếu hàm số y = f(x) có điểm cực đại và điểm cực tiểu thì giá trị cực đại lớn hơn giá trị cực tiểu. D. Nếu f”(x0) và f'(x0) = 0 thì x0 không phải là cực trị của hàm số. [ads] + Cho hàm số y = f(x) = ax^4 + bx^3 + cx^2 + dx + e (a khác 0). Hàm số y = f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên thuộc khoảng [-6;6] của tham số m để hàm số g(x) = f(3 – 2x + m) + x^2 – (m + 3)x + 2m^2 nghịch biến trên khoảng (0;1). Khi đó tổng giá trị các phần tử của S bằng?
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương - Quảng Nam
Thứ Tư ngày 17 tháng 06 năm 2020, trường THPT Hùng Vương – Quảng Nam tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương – Quảng Nam mã đề 101 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Hùng Vương – Quảng Nam : + Cho hàm số y = f(x) xác định trên [−1;2] \ {1} và có bảng biến thiên như sau. Chọn khẳng định đúng trong các khẳng định sau: A. GTLN của hàm số trên đoạn [−1;2] bằng 5 và hàm số không có giá trị nhỏ nhất trên đoạn [−1;2]. B. Hàm số có giá trị cực đại bằng 3 và giá trị cực tiểu bằng −1. C. GTLN của hàm số trên đoạn [−1;2] bằng 5 và GTNN của hàm số trên đoạn [−1;2] bằng 0. D. GTLN của hàm số trên đoạn [−1;2] bằng 5 và GTNN của hàm số trên đoạn [−1;2] bằng −1. [ads] + Cắt một tấm bìa cứng để được một hình tròn có tâm O và bán kính R = √2. Lấy hai điểm A và B thuộc đường tròn sao cho AOB = 60o. Cắt bỏ phần hình quạt chứa ∆OAB và dán hai mép OA, OB lại với nhau để được một hình nón. Thể tích khối nón gần với giá trị nào sau đây nhất? + Cho hàm số y = f(x) = (ax + m^2)/(cx + m) (ac khác 0 và m khác 0) có bảng biến thiên như sau. Có bao nhiêu giá trị nguyên âm của tham số m để đồ thị hàm số đã cho cắt trục hoành và trục tung lần lượt tại hai điểm A và B sao cho tam giác OAB có diện tích không nhỏ hơn 81 (đơn vị diện tích)?