Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử - Trần Văn Tài

Tài liệu gồm 174 trang tuyển tập các bài toán ứng dụng thực tiễn chọn lọc trong các đề thi thử THPT Quốc gia năm 2017, có lời giải chi tiết. Các bài toán được phân dạng thành các chủ đề: + Chủ đề 1. Liên quan di chuyển – quãng đường đi + Chủ đề 2. Liên quan cắt – ghép các khối hình + Chủ đề 3. Lãi suất ngân hàng – trả góp + Chủ đề 4. Bài toán tăng trưởng + Chủ đề 5. Bài toán tối ưu chi phí sản xuất + Chủ đề 6. Bài toán thực tế min – max [ads] Trích dẫn tài liệu : + Một kho hàng được đặt tại ví trí A trên bến cảng cần được chuyển tới kho C trên một đảo, biết rằng khoảng cách ngắn nhất từ kho C đến bờ biển AB bằng độ dài CB = 60 km và khoảng cách giữa 2 điểm A, B là AB = 130km. Chi phí để vận chuyển toàn bộ kho hàng bằng đường bộ là 300.000 đồng/km, trong khi đó chi phí vận chuyển hàng bằng đường thủy là 500.000 đồng/km. Hỏi phải chọn điểm trung chuyển hàng D (giữa đường bộ và đường thủy) cách kho A một khoảng bằng bao nhiêu thì tổng chi phí vận chuyển hàng từ kho A đến kho C là ít nhất? + Một vùng đất hình chữ nhật ABCD có AB = 25km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15km/h, vận tốc của ngựa khi đi trên phần MNCD là 30km/h. Thời gian ít nhất để ngựa di chuyển từ A đến C là mấy giờ? + Trong Công viên Toán học có những mảnh đất mang hình dáng khác nhau. Mỗi mảnh được trồng một loài hoa và nó được tạo thành bởi một trong những đường cong đẹp trong toán học. Ở đó có một mảnh đất mang tên Bernoulli, nó được tạo thành từ đường Lemmiscate có phương trình trong hệ tọa độ Oxy là 16y^2 = x^2.(25 – x^2) như hình vẽ bên. Tính diện tích S của mảnh đất Bernoulli biết rằng mỗi đơn vị trong hệ tọa độ Oxy tương ứng với chiều dài 1 mét.

Nguồn: toanmath.com

Đọc Sách

Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài
Nội dung Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Bản PDF - Nội dung bài viết Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Bộ đề trắc nghiệm luyện thi THPT Quốc gia năm 2017 môn Toán Phạm Đức Tài Sách này bao gồm 20 đề trắc nghiệm và hướng dẫn giải, tổng cộng là 196 trang. Đây là tài liệu luyện thi quan trọng cho học sinh ôn tập và chuẩn bị cho kỳ thi THPT Quốc gia năm 2017. Mỗi đề trắc nghiệm được biên soạn kỹ lưỡng, giúp học sinh rèn luyện kỹ năng giải các câu hỏi trong môn Toán một cách hiệu quả. Hướng dẫn giải chi tiết và dễ hiểu cũng sẽ giúp học sinh nắm vững kiến thức và cải thiện kỹ năng làm bài thi. Đây thực sự là công cụ hữu ích để học sinh đạt kết quả cao trong kỳ thi quan trọng này.
Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương
Nội dung Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán Nguyễn Đại Dương Bản PDF - Nội dung bài viết Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Dự đoán câu điểm 9 trong đề thi THPT Quốc gia 2016 môn Toán theo Nguyễn Đại Dương Trong tài liệu này, Nguyễn Đại Dương đã tổng hợp cách giải các dạng toán nâng cao có khả năng xuất hiện trong câu điểm 9 của đề thi THPT Quốc gia môn Toán. Tài liệu gồm 23 trang, trình bày chi tiết và cụ thể về cách giải các bài toán phức tạp mà thường xuất hiện trong phần điểm cao của đề thi. Theo Nguyễn Đại Dương, xu hướng mới của đề thi Toán THPT Quốc gia là các bài toán câu điểm 9 dần chuyển sang các dạng khác, không chỉ xoay quanh Phương trình – Bất phương trình – Hệ phương trình như trước. Các dạng bài toán có khả năng xuất hiện theo ưu tiên sẽ bao gồm: Phương trình – Bất phương trình chứa tham số. Phương trình – Bất phương trình chứa Mũ và Logarit. Bài toán thực tế. Với tài liệu này, Nguyễn Đại Dương hi vọng rằng các học sinh sẽ trang bị cho mình kiến thức và kỹ năng giải quyết các dạng bài toán này. Nếu gặp phải trong phòng thi, các em sẽ có đủ kiến thức và tự tin để giải quyết. Đây là một tài liệu hữu ích và cần thiết để chuẩn bị tốt cho kỳ thi quan trọng.
Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook
Nội dung Chắt lọc tinh túy 3 câu phân loại trong đề thi thử môn Toán Tài liệu Lovebook Bản PDF - Nội dung bài viết Tài liệu học Toán tinh túy từ Lovebook Tài liệu học Toán tinh túy từ Lovebook Tài liệu "Chắt lọc tinh túy của 3 câu phân loại trong các đề thi thử THPT Quốc gia môn Toán" từ Lovebook là một bộ tài liệu giúp học sinh luyện thi hiệu quả. Cuốn sách này đã sắp xếp các bài giảng một cách logic, phù hợp cho việc ôn tập trong một tháng. Đáng chú ý ở đây là sự tập trung vào các bài tập phân loại, so sánh và phân tích sâu vấn đề.
Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh
Nội dung Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Bản PDF - Nội dung bài viết Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio Lâm Hữu Minh Tài liệu "Kỹ thuật CASIO luyện thi THPT Quốc gia" do tác giả Lâm Hữu Minh biên soạn gồm 122 trang hướng dẫn sử dụng Casio để giải các dạng toán trong đề thi THPT Quốc gia. Kỹ thuật CASIO được áp dụng một cách sáng tạo và khác biệt so với cách dùng máy tính thông thường. Các phương pháp sử dụng máy tính Casio trong tài liệu này không chỉ giúp người học nhanh chóng và hiệu quả khi giải các bài toán mà còn phát triển sự linh hoạt, sáng tạo và tăng tốc độ xử lý vấn đề. Kỹ thuật CASIO hướng đến mục tiêu luyện cho người học sự dẻo tay, nhanh nhạy khi sử dụng máy tính Casio để giải toán. Đồng thời, tài liệu cũng cung cấp những phương pháp bấm máy hiệu quả, tránh những thao tác không cần thiết và giúp tối ưu hóa quá trình giải toán. Tuy đề thi ngày càng đòi hỏi tư duy và suy luận cao, nhưng việc học Kỹ thuật CASIO sẽ giúp người học vững chắc trong việc sử dụng máy tính Casio trong kỳ thi THPT Quốc gia. Việc thành thạo Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học sẽ tạo nên sự tự tin và khả năng giải quyết vấn đề hiệu quả cho người học khi tham gia kỳ thi. Không chỉ giúp cải thiện kỹ năng sử dụng máy tính Casio mà còn khuyến khích sự sáng tạo và nghiên cứu trong việc giải các bài toán. Từ đó, người học có thể mở rộng và áp dụng Kỹ thuật CASIO vào các môn học khác.