Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Hà Nội (chuyên)

Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho một bảng ô vuông kích thước 6 x 7 (6 hàng, 7 cột) được tạo bởi các ô vuông kích thước 1 x 1. Mỗi ô vuông kích thước 1 x 1 được tô bởi một trong hai màu đen hoặc trắng sao cho trong mọi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô vuông kích thước 1 x 1 được tô màu đen có chung cạnh. Gọi m là số ô vuông kích thước 1 x 1 được tô màu đen trong bảng. a) Chỉ ra một cách tô sao cho m = 20. b) Tìm giá trị nhỏ nhất của m. [ads] + Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn bàng tiếp trong góc A của tam giác ABC. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ điểm I đến các đường thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (I) tại hai điểm phân biệt D và M. Đường thẳng qua K song song với đường thẳng AD cắt đường thẳng BC tại N. a) Chứng minh rằng tam giác MFD đồng dạng với tam giác BNK. b) Gọi P là giao điểm của BI và FD. Chứng minh góc BMF bằng góc DMP. c) Chứng minh đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của đoạn thẳng KN. + Cho đa thức P(x) với hệ số thực thỏa mãn P(1) = 3 và P(3) = 7. Tìm đa thức dư trong phép chia đa thức P(x) cho đa thức x^2 – 4x + 3.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội được biên soạn nhằm giúp các em học sinh lớp 9 đang học tập tại các trường THCS trên địa bàn quận Hai Bà Trưng, Hà Nội nắm được dạng đề và rèn luyện để chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT trong thời gian sắp tới, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh - Hà Nội
Đề thi thử vào lớp 10 môn Toán 2018 trường THCS Thái Thịnh – Hà Nội được biên soạn theo hình thức tự luận với 5 bài toán, thời gian làm bài 120 phút, kỳ thi được diễn ra vào ngày 15 tháng 05 năm 2018, đề nhằm giúp các em học sinh lớp 9 làm quen với hình thức thi cử, nắm được cấu trúc đề, các dạng toán thường gặp trong đề tuyển sinh vào lớp 10 môn Toán, để các em rèn luyện, chuẩn bị cho kỳ thi vượt cấp sắp tới, đề thi có đáp án và lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán năm 2018 - 2019 trường THCS Mỹ Xá - Nam Định
Đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 trường THCS Mỹ Xá – Nam Định gồm 2 trang với 2 phần: phần trắc nghiệm khách quan gồm 8 câu hỏi, phần tự luận gồm 5 bài toán, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2018 – 2019 : + Cho hình chữ nhật ABCD có AB = 3cm, CB = 4cm. Quay hình chữ nhật đó một vòng quanh cạnh AB được một hình trụ. Thể tích hình trụ đó bằng? + Giá trị của m để đường thẳng y = x – 2 và đường thẳng y = 2x + m – 1 cắt nhau tại một điểm nằm trên trục tung là? [ads] + Cho tứ giác ABCD nội tiếp đường tròn đường kính AD. Đường chéo AC và BD cắt nhau tại E. Gọi F là hình chiếu của E trên AD. Đường thẳng CF cắt đường tròn tại điểm thứ hai là M (M khác C). Gọi N là giao điểm của BD và CF. 1. Chứng minh tứ giác ABEF và tứ giác CDFE là các tứ giác nội tiếp. 2. Chứng minh FA là tia phân giác của góc BFM và BE.DN = EN.BD. 3. Gọi K là trung điểm của DE. Chứng minh tứ giác BCKF nội tiếp.
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy - Nam Định
Đề thi thử vào lớp 10 môn Toán THPT năm 2018 phòng GD và ĐT Giao Thủy – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán THPT năm 2018 : + Cắt một hình cầu bởi một mặt phẳng cách tâm hình cầu 4dm. Biết bán kính hình cầu bằng 5dm. Chu vi mặt cắt bằng? + Cho tam giác IAB vuông tại I. Quay tam giác IAB một vòng quanh cạnh IA cố định ta được một hình? [ads] + Trong mặt phẳng tọa độ Oxy cho Parabol 2 (P): y = x^2 và đường thẳng (d): y = 4x + 1 – m. 1) Cho m = 4, hãy tìm tất cả các hoành độ giao điểm của (d) và (P). 2) Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm có tung độ là y1; y2 thỏa mãn √y1.√y2 = 5.