Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Lâm Đồng

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Lâm Đồng. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Lâm Đồng : + Trong lễ phát động phong trào trồng cây nhân dịp kỷ niệm ngày sinh Bác Hồ, lớp 9A được giao trồng 360 cây. Khi thực hiện có 4 bạn được điều đi làm việc khác, nên mỗi học sinh còn lại phải trồng thêm một cây so với dự định. Hỏi lớp 9A có bao nhiêu học sinh? (Biết số cây trồng của mỗi học sinh như nhau). [ads] + Từ điểm A nằm ngoài đường tròn (O), vẽ tiếp tuyến AB (B là tiếp điểm) và cát tuyến ACD không đi qua tâm O (C nằm giữa A và D). Gọi E là trung điểm của CD. Chứng minh rằng ABOE là tứ giác nội tiếp. + Cho △ABC nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). Tia FE cắt đường tròn tại M. Chứng minh AM^2 = AH.AD.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – (m + 3)x + 2m + 2 = 0 với m là tham số. Tìm giá trị của tham số m để: a) Phương trình có nghiệm x = 3. b) Phương trình có hai nghiệm phân biệt x1 và x2 sao cho x12 + x22 = 13. + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối mỗi vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng của mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn người đó thu được là 252 triệu đồng. + Cho tam giác ABC có ba góc đều nhọn. Các đường cao AK, BE và CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH, N là trung điểm của đoạn BC. a) Chứng minh bốn điểm A, E, H, F nằm trên cùng một đường tròn. b) Chứng minh NE là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh CI2 – IE2 = CK.CB.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Hai đội công nhân cùng làm một công việc thì hoàn thành trong 12 ngày. Nếu họ làm riêng thì đội II hoàn thành công việc hết nhiều thời gian hơn đội I là 10 ngày. Hỏi nếu làm riêng, mỗi đội phải làm trong bao nhiêu ngày để xong công việc. + Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M là một điểm thuộc cung nhỏ BC (M khác B, M khác C), hai đường thẳng AM và CD cắt nhau tại E. a) Chứng minh tứ giác BMEF nội tiếp. b) Chứng minh tia MA là phân giác của CMD. c) Chứng minh AC2 = AE.AM. d) Gọi I là giao điểm của hai đường thẳng MD và AB, N là giao điểm của hai đường thẳng AM và BC. Chứng minh tâm đường tròn ngoại tiếp tam giác CEN nằm trên đường thẳng CI. + Một tỉnh dự định làm đường điện từ điểm M trên bờ biển đến điểm B trên một hòn đảo. B cách bờ một khoảng BB’ = 2 km, A cách B’ một khoảng AB’ = 3 km (hình vẽ). Biết chi phí làm 1 km đường điện trên bờ là 5 tỷ đồng, dưới biển nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 trường Đại học Sư Phạm Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2); kỳ thi được diễn ra vào chiều thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Văn Hoàng – Nguyễn Khang – Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội : + Cho đa thức P(x) = ax2 + bx + c (a khác 0). Chứng minh rằng nếu P(x) nhận giá trị nguyên với mỗi số nguyên x thì ba số 2a, a + b, c đều là những số nguyên. Sau đó chứng tỏ nếu ba số 2a, a + b, c là những số nguyên thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. + Cho tam giác ABC đều ngoại tiếp (O). Cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh rằng: EO là tia phân giác góc CEF. b) Chứng minh rằng: ABOF là tứ giác nội tiếp. c) Gọi D là giao điểm thứ hai của CE và đường tròn (O). Chứng minh rằng A, F, D thẳng hàng. + Ta viết 10 số 0, 1, …, 9 vào mười ô tròn trong hình bên, mỗi số được viết đúng 1 lần. Sau đó, ta tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có hay không một cách viết 10 số như thế sao cho 6 tổng nhận được là bằng nhau?
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 trường Đại học Sư Phạm Hà Nội (đề thi dùng cho mọi thí sinh thi vào trường chuyên / Toán chung / Toán điều kiện / vòng 1); kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi các tác giả Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội : + Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. + Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi đó; cửa hàng thu được lãi là 10% của giá nhập về. Giả sử cửa hàng tiếp tục nâng giá bán chiếc tivi đó thêm 5% của giá đã bán, nhưng bớt cho khách hàng 245000 đồng, khi đó cửa hàng sẽ thu được tiền lãi là 12% của giá nhập về. Tìm giá tiền khi nhập về của chiếc tivi đó. + Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD.