Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GDĐT Sơn La

Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Sơn La tổ chức là một trong những kỳ thi quan trọng bậc nhất trong quá trình học tập của học sinh tỉnh nhà, đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là căn cứ để xét tuyển các em vào các trường Trung học Phổ thông trên địa bàn tỉnh Sơn La. Một trong những môn thi rất quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để quý thầy, cô giáo, quý vị phụ huynh và các em học sinh tham khảo, THCS. giới thiệu nội dung đề thi và lời giải chi tiết đề thi tuyển sinh vào lớp 10 hệ THPT năm học 2019 – 2020 môn Toán sở GD&ĐT Sơn La, kỳ thi được diễn ra vào ngày …/06/2019. Trích dẫn đề tuyển sinh lớp 10 THPT năm 2019 – 2020 môn Toán sở GD&ĐT Sơn La : + Trong kỳ thi tuyển sinh vào lớp 10 năm học 2019 – 2020, số thí sinh vào trường THPT chuyên bằng 2/3, số thí sinh thi vào trường PTDT Nội trú. Biết rằng tổng số phòng thi của cả hai trường là 80 phòng thi và mỗi phòng thi có đúng 24 thí sinh. Hỏi số thí sinh vào mỗi trường bằng bao nhiêu? [ads] + Cho đường tròn (O) đường kính AB = 2R và C là một điểm nằm trên đường tròn sao cho CA > CB. Gọi I là trung điểm của OA, vẽ đường thẳng d vuông góc với AB tại I, d cắt tia BC tại M và cắt đoạn AC tại P, AM cắt đường tròn (O) tại điểm thứ hai K. a) Chứng minh tứ giác BCPI nội tiếp được trong một đường tròn. b) Chứng minh ba điểm B, P, K thẳng hàng. c) Các tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại Q, biết BC = R. Tính độ dài BK và diện tích tứ giác QAIM theo R. + Cho parabol (P):y = x^2 và đường thẳng y = (2m – 1)x + m^2 + 2m (m là tham số, m thuộc R). a) Xác định tất cả các giá trị của m để đường thẳng (d) đi qua điểm I(1;3). b) Tìm m để parabol (P) cắt đường thẳng (d) tại hai điểm phân biệt A, B. Gọi x1, x2 là hoành độ hai điểm A, B; tìm m sao cho x1^2 + x2^2 + 6x1x2 = 2020.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2023-2024 sở GD&ĐT Bà Rịa Vũng Tàu Đề tuyển sinh môn Toán (chung) năm 2023-2024 sở GD&ĐT Bà Rịa Vũng Tàu Xin chào quý thầy cô và các em học sinh! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023-2024 của Sở Giáo dục và Đào tạo tỉnh Bà Rịa-Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 6/6/2023. Dưới đây là một số câu hỏi trong đề thi: 1. Cho parabol (P): y = -x² và đường thẳng (d): y = 3x - m (với m là tham số). a) Vẽ parabol (P). b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn 5(x1 + x2) = 1 - (x1x2)². 2. Ông A có một mảnh đất hình chữ nhật, chiều dài hơn chiều rộng 15m. Sau khi bán đi một phần mảnh đất đó, mảnh đất còn lại vẫn là hình chữ nhật, nhưng chiều rộng đã giảm 5m, chiều dài không đổi và diện tích là 300m². Hãy tính chiều dài và chiều rộng của mảnh đất lúc đầu. 3. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (AB < AC). Các đường cao BD, CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) Đường thẳng ED cắt tiếp tuyến tại C của đường tròn (O) tại K và cắt đường tròn (O) tại M, N (M nằm giữa D và K). So sánh KNC với KCM và chứng minh KC² = KM·KN. c) Kẻ đường kính AQ của đường tròn (O) cắt MN tại P. Chứng minh QM = QN. d) Gọi F, I lần lượt là giao điểm của hai tia AH, HQ với BC. Chứng minh SHDE/SABC = DE²/3BC². Hy vọng rằng đề thi sẽ giúp các em tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả cao!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Đề Tuyển Sinh Vào Môn Toán Năm 2023 2024 Sở GD ĐT Khánh Hòa Sytu xin gửi đến quý thầy cô và các em học sinh Đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trong Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 của sở GD&ĐT Khánh Hòa, có những câu hỏi thú vị và đa dạng: 15 học sinh từ trường THCS X tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, có các kích thước cụ thể. Yêu cầu tính thể tích phần đất nung của một viên gạch dựa trên công thức đã cho. Đề tài khám phá về tam giác và tứ giác, yêu cầu chứng minh các tính chất phức tạp của các hình học. Phần cuối của Đề tuyển sinh đề cập đến các vấn đề liên quan đến hình học không gian và tính chất của các hình học phức tạp, đòi hỏi học sinh cần phải có kiến thức sâu rộng và suy luận logic tốt. Với nội dung đa dạng và phong phú như vậy, Đề tuyển sinh vào môn Toán năm 2023 2024 của sở GD ĐT Khánh Hòa không chỉ giúp học sinh ôn tập kiến thức một cách hiệu quả mà còn giúp họ phát triển kỹ năng tư duy logic và giải quyết vấn đề. Chúc quý thầy cô và các em học sinh chuẩn bị tốt cho kỳ thi sắp tới!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Đề tuyển sinh vào môn Toán năm 2023 - 2024 sở GD&ĐT Bình Định Chào quý thầy cô và các bạn học sinh, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Bình Định. Kỳ thi sẽ diễn ra vào thứ Ba, ngày 06 tháng 06 năm 2023. Cụ thể, đây là một số câu hỏi trong đề thi: 1. Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax - 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm giá trị của a. b) Tìm toạ độ giao điểm của đường thẳng (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). 2. Trong kì thi tuyển sinh vào lớp 10 THPT, hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi công bố kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? 3. Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. a) Chứng minh tứ giác BCEF nội tiếp. b) Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. c) Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn. Hy vọng rằng đề thi này sẽ giúp các bạn học sinh chuẩn bị tốt cho kỳ thi tuyển sinh. Chúc quý thầy cô và các em đạt kết quả cao!
Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Cao Bằng
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT Cao Bằng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023-2024 tỉnh Cao Bằng Đề tuyển sinh môn Toán năm 2023-2024 tỉnh Cao Bằng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Cao Bằng. Kỳ thi sẽ diễn ra vào sáng thứ Ba ngày 06 tháng 06 năm 2023. Đề tuyển sinh lớp 10 môn Toán năm 2023-2024 sở GD&ĐT Cao Bằng bao gồm các câu hỏi sau: 1. Một mảnh vườn hình chữ nhật có chu vi là 180m. Nếu tăng chiều rộng mảnh vườn lên thêm 20m và giảm chiều dài đi 20m thì diện tích mảnh vườn không thay đổi. Hãy tính chiều dài và chiều rộng mảnh vườn. 2. Cho tam giác ABC vuông tại A. Biết AC = 8cm; BC = 10cm. a) Tính độ dài cạnh AB. b) Kẻ đường cao AH. Tính độ dài đoạn thẳng HC. 3. Cho đường tròn (O) đường kính AB, trên đoạn thẳng OB lấy điểm C sao cho C không trùng với O và B. Gọi H là trung điểm của AC, kẻ dây cung DE của đường tròn (O) vuông góc với AC tại H. Gọi K là giao điểm của BD với đường tròn đường kính BC. a) Chứng minh tứ giác DHCK là tứ giác nội tiếp. b) Chứng minh ba điểm E, C, K thẳng hàng. Hãy chuẩn bị kỹ lưỡng và tự tin để đối mặt với kỳ thi sắp tới. Chúc các em đạt kết quả cao trong kỳ thi!