Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

7 chuyên đề luyện thi vào lớp 10 môn Toán - Diệp Tuân
Tài liệu gồm 185 trang, được biên soạn bởi thầy giáo Diệp Tuân, tuyển tập 7 chuyên đề luyện thi vào lớp 10 môn Toán. Chuyên đề 1. Căn bậc hai và căn bậc ba. Chuyên đề 2. Hàm số bậc nhất và hàm số bậc hai. Chuyên đề 3. Phương trình và hệ phương trình. Chuyên đề 4. Phương trình chứa tham số m. Chuyên đề 5. Giải toán bằng cách lập phương trình và hệ phương trình.
Phân dạng các bài toán trong đề tuyển sinh lớp 10 môn Toán (2023 - 2024)
Tài liệu gồm 236 trang, được biên soạn bởi quý thầy, cô giáo nhóm Word – Giải – Tách Chuyên Đề Vào 10 Môn Toán, phân dạng và hướng dẫn giải chi tiết các bài toán trong các đề thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024. Chuyên đề 1. Căn thức và các bài toán liên quan. Chuyên đề 2. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Chuyên đề 3. Hàm số. Chuyên đề 4. Hệ phương trình. Chuyên đề 5. Phương trình. Chuyên đề 6. Hình học. Chuyên đề 7. Bất đẳng thức. Chuyên đề 8. Giá trị của biểu thức. Chuyên đề 9. Số học.
Hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng)
Tài liệu gồm 56 trang, hệ thống các khái niệm cơ bản và định lý hình học THCS (hình học phẳng). ĐẶC ĐIỂM CHUNG CỦA BỘ MÔN HÌNH HỌC: Kiến thức về bộ môn toán nói chung, bộ môn hình học nói riêng được xây dựng theo một hệ thống chặt chẽ: Từ Tiên đề đến Định nghĩa các Khái niệm – Định lý – và Hệ quả. Đối với những bài toán thông thường, học sinh chỉ cần vận dụng một vài khái niệm, định lý, hệ quả để giải. Đối với những bài toán khó, để xác định hướng giải (cũng như để giải được) học sinh cần nắm được không những hệ thống kiến thức (lý thuyết) mà còn cần nắm chắc cả hệ thống bài tập, để vận dụng chúng vào giải bài tập mới. Do đó để giải tốt các bài toán hình học, học sinh cần: a/ Nắm chắc hệ thống kiến thức về lý thuyết. b/ Nắm chắc hệ thống bài tập. c/ Biết cách khai thác giả thiết nhằm đọc hết những thông tin tiềm ẩn trong giả thiết, nắm chắc, nắm đầy đủ cái ta có, suy ra cái ta sẽ có (càng nhiều càng tốt). Từ đó giúp ta xây dựng hướng giải, vẽ được đường phụ cũng như giúp ta có thể giải được bài toán bằng nhiều cách. Nội dung ở cột Hình vẽ, khai thác ở bảng tổng hợp dưới đây nhằm giúp học sinh tập dượt suy ra cái ta sẽ có ở nội dung Nếu có ….. Ta có ….. d/ Biết cách tìm hiểu câu hỏi (kết luận): + Nắm chắc các phương pháp chứng minh từng dạng toán (trong đó cần hết sức lưu ý định nghĩa các khái niệm). + Biết đưa bài toán về trường hợp tương tự. + Nắm được ý nghĩa của câu hỏi để có thể chuyển sang dạng tương đương. Ví dụ để chứng minh biểu thức M không phụ thuộc vị trí của cát tuyến d khi d quay quanh điểm O ta cần chứng minh M = hằng số. Tài liệu này tổng hợp, hệ thống các khái niệm và định lý (trong phần hình học phẳng) trong chương trình hình học trung học cơ sở bằng cách tổng hợp tất cả các khái niệm, định lý (liên quan đến từng khái niệm) về một mối. Trên cơ sở đó giúp học sinh ôn tập một cách tổng hợp các khái niệm, định lý để vận dụng vào giải toán. Đề nghị các trường triển khai đến học sinh, giáo viên để nghiên cứu vận dụng. Các khái niệm, định lý trong tài liệu này được chia ra các phần chính như sau: 1/ ĐƯỜNG THẲNG – ĐOẠN THẲNG – TIA – GÓC – QUAN HỆ GIỮA ĐƯỜNG VUÔNG GÓC VÀ ĐƯỜNG XIÊN, ĐƯỜNG XIÊN VÀ HÌNH CHIẾU. 2/ TAM GIÁC – TAM GIÁC CÂN – TAM GIÁC VUÔNG – TAM GIÁC VUÔNG CÂN – TAM GIÁC ĐỀU. 3/ TỨ GIÁC – HÌNH THANG – HÌNH BÌNH HÀNH – HÌNH CHỮ NHẬT – HÌNH THOI – HÌNH VUÔNG – ĐA GIÁC. 4/ ĐƯỜNG TRÒN. Nội dung tài liệu được thiết kế theo dạng bảng gồm 4 cột: + Khái niệm: Nêu tên khái niệm. Trong từng khái niệm có ghi chú khái niệm đó được học ở khối lớp nào trong chương trình hình học THCS để học sinh vận dụng phù hợp với khối lớp đang học. + Nội dung: Nêu định nghĩa khái niệm, các định lý, nhận xét liên quan đến khái niệm đó. + Hình vẽ – Khai thác: – Hình vẽ minh họa. – Giúp học sinh tìm tòi, khai thác dưới dạng Nếu có ….. thì ta có 1) – 2) – 3) … để tăng thêm dữ liệu phục vụ cho giải bài toán liên quan đến khái niệm đó. + Cách chứng minh: Nếu các cách chứng minh hình học. VD chứng minh hai đường thẳng song song. Đây chỉ là tài liệu tham khảo, rất mong sự đóng góp ý kiến của đội ngũ giáo viên để Phòng Giáo dục có thể điều chỉnh, hoàn thiện tài liệu này.