Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra HK2 Toán 11 năm 2018 - 2019 trường Phan Văn Trị - Cần Thơ

Đề kiểm tra HK2 Toán 11 năm 2018 – 2019 trường Phan Văn Trị – Cần Thơ gồm 3 trang, đề gồm 20 câu trắc nghiệm và 3 câu tự luận, thời gian học sinh làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. 1. Mục đích + Biết cách tìm giới hạn cuả dãy số, giới hạn của hàm số, hàm số liên tục. + Biết cách ứng dụng vào các bài toán đơn giản vào thực tiển. + Biết cách tính giới hạn một bên. + Áp dụng thành thạo các công thức, đạo hàm của tổng, hiệu, tích, thương. + Áp dụng thành thạo các qui tắc đã biết để tính đạo hàm của các hàm số lượng giác, đạo hàm của hàm hợp. + Nắm được định nghĩa: vectơ trong không gian, sự đồng phẳng của ba vectơ, điều kiện để ba vectơ đồng phẳng, góc giữa hai vec tơ trong không gian, tích vô hướng của hai vectơ, hai đường thẳng vuông góc với nhau, đường thẳng vuông góc với mặt phẳng trong không gian. + Biết thực hiện phép cộng, phép trừ, phép nhân vec tơ với một số, biết sử dụng quy tắc ba điểm, quy tắc hình hộp trong không gian. + Biết cách xác định góc giữa hai đường thẳng. + Biết sử dụng định lí ba đường vuông góc, biết cách xác định góc giữa đường thẳng và mặt phẳng trong không gian. [ads] 2. Yêu cầu + Nắm được các định lí bước đầu biết cách áp dụng vào giải toán. + Nắm vững các khái niệm giới hạn cuả dãy số, giới hạn của hàm số, hàm số liên tục, phân biệt được sự khác nhau giữa các khái niệm. + Nhớ được các định lí về giới hạn một bên, hàm số liên tục tại một điểm, hàm số liên tục trên khoảng, trên đoạn, trên tập xác định. + Hiểu rõ ý nghĩa của đạo hàm tại một điểm. + Nắm vững ý nghĩa hình học của đạo hàm, ý nghĩa vật lí của đạo hàm để áp dụng vào bài toán thực tế. + Sử dụng đạo hàm để tìm hệ số góc của tiếp tuyến, viết được phương trình tiếp tuyến. + Nắm được cách chứng minh: hai đường thẳng vuông góc, đường thẳng vuông góc với mặt phẳng trong không gian. + Nắm được mối liên hệ giữa quan hệ song song và quan hệ vuông góc của đường thẳng và mặt phẳng để lập luận khi làm bài toán về hình học không gian.

Nguồn: toanmath.com

Đọc Sách

Đề cuối kỳ 2 Toán 11 năm 2021 - 2022 trường Lạc Long Quân - Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lạc Long Quân, tỉnh Bến Tre; đề thi gồm 16 câu trắc nghiệm (04 điểm) và 04 câu tự luận (06 điểm), thời gian làm bài 60 phút (không tính thời gian giao đề), đề thi có đáp án và lời giải chi tiết mã đề 01 và mã đề 02. Trích dẫn đề cuối kỳ 2 Toán 11 năm 2021 – 2022 trường Lạc Long Quân – Bến Tre : + Cho hình chóp S ABCD có đáy ABCD là hình vuông với cạnh AB a 2 SA vuông góc với mặt phẳng đáy và SA a 3. a) Chứng minh CD SAD. b) Tính góc giữa đường thẳng SC và mặt phẳng ABCD. c) Gọi H là hình chiếu vuông góc của A trên SC. Chứng minh AH BD và tính độ dài đoạn AH. + Cho chuyển động thẳng xác định bởi phương trình 2 9 3 4 2 S t t trong đó t được tính bằng giây và S được tính bằng mét. Vận tốc của chuyển động tại thời điểm t 2 (giây) là? + Đường thẳng y ax b tiếp xúc với đồ thị hàm số 3 1 3 y x x tại điểm có hoành độ bằng 2 giá trị của a b bằng?
Đề học kỳ 2 Toán 11 năm 2021 - 2022 trường Lương Ngọc Quyến - Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề được biên soạn theo hình thức 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết mã đề 111 – 112. Trích dẫn đề học kỳ 2 Toán 11 năm 2021 – 2022 trường Lương Ngọc Quyến – Thái Nguyên : + Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh bằng a 3. Cạnh bên SB vuông góc với đáy và SB a 2 M là trung điểm của cạnh AC G là trọng tâm của tam giác ABC. a) Chứng minh CG vuông góc với mặt phẳng (SAB). b) Chứng minh mặt phẳng SBM vuông góc mặt phẳng SAC. c) Tính góc giữa hai đường thẳng SA và BC. + Cho hình chóp S ABCD có đáy là hình chữ nhật tâm O cạnh SA vuông góc với mặt phẳng đáy. Gọi H và K lần lượt là hình chiếu của A lên SB và SD. Đường thẳng SC vuông góc với mặt phẳng nào trong các mặt phẳng sau đây? + Cho hình hộp chữ nhật ABCD A B C D. Chọn khẳng định sai? A. Góc giữa AC và B D bằng 0 90. B. Góc giữa B D và AA’ bằng 0 90. C. Góc giữa AD và BC bằng 0 0. D. Góc giữa BB’ và CD bằng 0 90.
Đề học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT Nguyễn Chí Thanh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài kiểm tra là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT Nguyễn Chí Thanh – TP HCM : + Cho hàm số f(x) = (x + 1)(x – 2)2. Giải bất phương trình f'(x) >= 3x. + Cho đồ thị (C) của hàm số y = f(x). Viết phương trình tiếp tuyến với đồ thị (C) tại điểm có hoành độ x0 = 1. + Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a (a > 0), tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi H là trung điểm của cạnh AB. a. Chứng minh SH vuông góc (ABCD) và (SBC) vuông góc (SAB). b. Tính góc giữa hai mặt phẳng (SCD) và (ABCD). c. Tính khoảng cách từ A đến mặt phẳng (SBD). d. Gọi M là trung điểm SC. Tính khoảng cách giữa hai đường thẳng HM và SD.
Đề học kỳ 2 Toán 11 năm 2021 - 2022 trường THPT chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 2 môn Toán 11 năm học 2021 – 2022 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài kiểm tra là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề học kỳ 2 Toán 11 năm 2021 – 2022 trường THPT chuyên Lê Hồng Phong – TP HCM : + Cho đồ thị (C): y = x3 + x + 2, viết phương trình tiếp tuyến của (C) tại điểm có tung độ là 4. + Tìm tất cả giá trị thực của tham số m để hàm số sau liên tục tại x0 = 2. + Cho phương trình mx4 – (3m – 1)x3 – 6×2 + (2m + 1)x + m – 6 = 0. Chứng minh rằng phương trình có ít nhất hai nghiệm với mọi tham số thực m.