Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng cơ bản và nâng cao Toán 10 (Tập 1 Đại số 10)

Tài liệu gồm 567 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tổng hợp đầy đủ lý thuyết, các dạng toán và bài tập từ cơ bản đến nâng cao các chuyên đề Toán lớp 10 phần Đại số. Khái quát nội dung tài liệu bài giảng cơ bản và nâng cao Toán 10 (Tập 1: Đại số 10): CHƯƠNG 1 . MỆNH ĐỀ – TẬP HỢP. BÀI 1. MỆNH ĐỀ. Dạng 1. Nhận biết mệnh đề, mệnh đề chứa biến. Dạng 2. Xét tính đúng sai của mệnh đề. Dạng 3. Phủ định của mệnh đề. Dạng 4. Mệnh đề kéo theo, mệnh đề đảo và hai mệnh đề tương đương. Dạng 5. Mệnh đề với kí hiệu với mọi, tồn tại. BÀI 2. TẬP HỢP. Dạng 1. Tập hợp và các phần tử của tập hợp. Dạng 2. Tập hợp con và hai tập hợp bằng nhau. BÀI 3. CÁC PHÉP TOÁN TẬP HỢP. Dạng 1. Giao và hợp của hai tập hợp. Dạng 2. Hiệu và phần bù của hai tập hợp. Dạng 3. Bài toán sử dụng biểu đồ Ven. Dạng 4. Chứng minh X ⊂ Y. Chứng minh X = Y. BÀI 4. CÁC TẬP HỢP SỐ. Dạng 1. Tìm giao và hợp các khoảng, nửa khoảng, đoạn. Dạng 2. Xác định hiệu và phần bù các khoảng, đoạn, nửa khoảng. BÀI 5. SỐ GẦN ĐÚNG VÀ SAI SỐ. Dạng 1. Biết số gần đúng a và độ chính xác d. Ước lượng sai số tương đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 2. Biết số gần đúng a và sai số tương đối không vượt quá c. Ước lượng sai số tuyệt đối, các chữ số chắc, viết dưới dạng chuẩn. Dạng 3. Quy tròn số. Ước lượng sai số tuyệt đối, sai số tương đối của số quy tròn. Dạng 4. Sai số của tổng, tích và thương. Dạng 5. Xác định các chữ số chắc của một số gần đúng, dạng chuẩn của chữ số gần đúng và kí hiệu khoa học của một số. CHƯƠNG 2 . HÀM SỐ BẬC NHẤT VÀ BẬC HAI. BÀI 1. ĐẠI CƯƠNG VỀ HÀM SỐ. Dạng 1. Tính giá trị của hàm số tại một điểm. Dạng 2. Tìm tập xác định của hàm số. Dạng 3. Tính đồng biến, nghịch biến của hàm số. Dạng 4. Dựa vào đồ thị tìm các khoảng đồng biến, nghịch biến. Dạng 5. Xét tính chẵn lẻ của hàm số. BÀI 2. HÀM SỐ BẬC NHẤT. Dạng 1. Xét tính đồng biến, nghịch biến của hàm số. Dạng 2. Đồ thị hàm số bậc nhất. Dạng 3. Vị trí tương đối của hai đường thẳng. Dạng 4. Xác định hàm số bậc nhất. Dạng 5. Bài toán thực tế. BÀI 3. HÀM SỐ BẬC HAI. Dạng 1. Bảng biến thiên, tính đơn điệu, GTLN và GTNN của hàm số. Dạng 2. Xác định hàm số bậc hai. Dạng 3. Đồ thị hàm số bậc hai. Dạng 4. Sự tương giao. Dạng 5. Toán thực tế. CHƯƠNG 3 . PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. BÀI 1. ĐẠI CƯƠNG VỀ PHƯƠNG TRÌNH. Dạng 1. Điều kiện xác định của phương trình. Dạng 2. Sử dụng điều kiện xác định của phương trình để tìm gghiệm của phương trình. Dạng 3. Phương trình tương đương, phương trình hệ quả. BÀI 2. PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT VÀ PHƯƠNG TRÌNH BẬC HAI. Dạng 1. Phương trình tích. Dạng 2. Phương trình chứa ẩn trong giá trị tuyệt đối. Dạng 3. Phương trình chứa ẩn ở mẫu. Dạng 4. Phương trình chứa ẩn ở trong dấu căn. Dạng 5. Định lý Vi-et và ứng dụng. Dạng 6. Giải và biện luận phương trình. BÀI 3. PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT NHIỀU ẨN. Dạng 1. Giải và biện luận hệ phương trình bậc nhất hai ẩn. Dạng 2. Giải và biện luận hệ phương trình bậc nhất ba ẩn. Dạng 3. Giải và biện luận hệ phương trình bậc cao. Dạng 4. Các bài toán thực tế phương trình, hệ phương trình. CHƯƠNG 4 . BẤT ĐẲNG THỨC – BẤT PHƯƠNG TRÌNH. BÀI 1. BẤT ĐẲNG THỨC. Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. Dạng 2. Sử dụng bất đẳng thức Cauchy (Côsi) để chứng minh bất đẳng thức và tìm giá tri lớn nhất, nhỏ nhất. Dạng 3. Đặt ẩn phụ trong bất đẳng thức. Dạng 4. Sử dụng bất đẳng thức phụ. BÀI 2. BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. Dạng 1. Điều kiện xác định của bất phương trình. Dạng 2. Cặp bất phương trình tương đương. Dạng 3. Bất phương trình bậc nhất một ẩn. Dạng 4. Hệ bất phương trình bậc nhất một ẩn. BÀI 3. DẤU CỦA NHỊ THỨC BẬC NHẤT. Dạng 1. Xét dấu nhị thức bậc nhất. Dạng 2. Bất phương trình tích. Dạng 3. Bất phương trình chứa ẩn ở mẫu. Dạng 4. Bất phương trình chứa trị tuyệt đối. BÀI 4. BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. Dạng 1. Bất phương trình bậc nhất hai ẩn. Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. Dạng 3. Bài toán tối ưu. BÀI 5. DẤU CỦA TAM THỨC BẬC HAI. Dạng 1. Xét dấu của tam thức bậc hai áp dụng vào giải bất phương trình bậc hai đơn giản. Dạng 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích. Dạng 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu. Dạng 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số. Dạng 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt. Dạng 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn điều kiện cho trước. Dạng 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng. Dạng 8. Hệ bất phương trình bậc hai. CHƯƠNG 5 . THỐNG KÊ. BÀI 1. BẢNG PHÂN BỐ TẦN SỐ – TẦN SUẤT. BÀI 2. BIỂU ĐỒ. BÀI 3. SỐ TRUNG BÌNH – SỐ TRUNG VỊ – MỐT. BÀI 4. PHƯƠNG SAI VÀ ĐỘ LỆCH CHUẨN. CHƯƠNG 6 . CUNG VÀ GÓC LƯỢNG GIÁC, CÔNG THỨC LƯỢNG GIÁC. BÀI 1. CUNG VÀ GÓC LƯỢNG GIÁC. Dạng. Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2. GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng 1. Biểu diễn góc và cung lượng giác. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng 4. Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3. CÔNG THỨC LƯỢNG GIÁC. Dạng 1. Tính giá trị lượng giác, biểu thức lượng giác. Dạng 2. Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng 3. Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng 4. Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng 5. Chứng minh đẳng thức, bất đẳng thức trong tam giác.

Nguồn: toanmath.com

Đọc Sách

Một số tính chất hình học của đồ thị hàm số hữu tỉ - Phạm Tùng Quân
Tài liệu gồm 27 trang, được biên soạn bởi tác giả Phạm Tùng Quân (trường THPT chuyên Thăng Long, thành phố Đà Lạt, tỉnh Lâm Đồng), trình bày một số tính chất hình học của đồ thị hàm số hữu tỉ. Mục lục : 1 Giới thiệu 1. 2 Kiến thức chuẩn bị 3. 3 Tính lồi, lồi chặt của hàm số y = f(x) 5. 4 Hướng tiệm cận của đồ thị hàm số y = f(x) 10. 4.1 Hướng tiệm cận của đồ thị hàm số khi x tiến ra vô cùng 11. 4.2 Hướng tiệm cận của đồ thị hàm số khi x tiến đến α 14. 5 Hình học của đồ thị hàm số y = f(x) ngoài các đường tiệm cận 16. 6 Hình học của đồ thị hàm số y = f(x) giữa hai đường tiệm cận 16. 6.0.1 Trường hợp 1a: 17. 6.0.2 Trường hợp 1b: 18. 6.0.3 Trường hợp 2a: 18. 6.0.4 Trường hợp 2b: 20. 6.0.5 Trường hợp 3a: 21. 6.0.6 Trường hợp 3b: 23. Tài liệu tham khảo 25.
Kỹ thuật giảm biến và ứng dụng đạo hàm tìm GTNN - GTLN biểu thức nhiều biến
Tài liệu gồm 16 trang, được biên soạn bởi cô giáo Võ Thị Ngọc Ánh (trường THPT Chuyên Nguyễn Tất Thành, tỉnh Kon Tum), hướng dẫn một số kỹ thuật giảm biến và ứng dụng của đạo hàm để tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức nhiều biến, hỗ trợ học sinh lớp 12 ôn thi học sinh giỏi môn Toán 12 cấp tỉnh. I. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC HAI BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x hoặc y) hoặc so sánh bất đẳng thức (≤, ≥) giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) của biểu thức P. 2. Các ví dụ minh họa. Kĩ thuật 1: Thế biến để đưa biểu thức P về một biến. Kĩ thuật 2: Đặt biến phụ để đưa biểu thức P về biểu thức theo một biến. + Dạng 1: Đặt biến phụ đối với biểu thức P có dạng đối xứng. + Dạng 2: Đặt biến phụ đối với điều kiện (*) là tổng các hạng tử đồng bậc hoặc biểu thức P thể hiện tính “đồng bậc” (đối với các biến x và y). Kĩ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. 3. Bài tập rèn luyện. II. MỘT SỐ KỸ THUẬT GIẢM BIẾN VÀ ỨNG DỤNG CỦA ĐẠO HÀM ĐỂ TÌM GIÁ TRỊ NHỎ NHẤT, GIÁ TRỊ LỚN NHẤT CỦA BIỂU THỨC BA BIẾN. 1. Các bước giải bài toán. Bước 1: Sử dụng các kĩ thuật giảm biến đưa biểu thức P = f(t) (t cũng có thể là x, y hoặc z) hoặc so sánh bất đẳng thức (≤, ≥)giữa P với hàm một biến f(t). + Kỹ thuật 1: Thế biến để chuyển P về một biến (là một trong các biến đã cho). + Kỹ thuật 2: Đặt biến phụ để chuyển P về một biến (là biến phụ đã đặt). + Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) và đặt biến phụ (nếu cần) để chuyển việc đánh giá P về khảo sát hàm một biến. Bước 2: Sử dụng các điều kiện ràng buộc (*), các bất đẳng thức cơ bản (được chứng minh trước đó) để tìm điều kiện “chặt” của biến t, thực chất đây là miền giá trị của t khi x, y, z thay đổi thỏa điều kiện (*). Bước 3: Xét sự biến thiên của hàm f(t) và suy ra kết quả về giá trị nhỏ nhất, giá trị lớn nhất (nếu có) đối với P. 2. Các ví dụ minh họa. Kỹ thuật 1: Thế biến để đưa biểu thức về một biến. Kỹ thuật 2: Đặt biến phụ để đưa biểu thức về một biến. Kỹ thuật 3: Đánh giá bất đẳng thức (≤, ≥) để so sánh biểu thức P với biểu thức chứa một biến. 3. Bài tập rèn luyện.
Chuyên đề nguyên lý cực hạn - Huỳnh Kim Linh
Tài liệu gồm 25 trang, được biên soạn bởi thầy giáo Huỳnh Kim Linh (trường THPT Chuyên Lê Quý Đôn, tỉnh Khánh Hòa), hướng dẫn sử dụng nguyên lý cực hạn trong giải quyết các bài toán Hình học, Đại số, Số học. Lời giới thiệu : Tổ hợp là một lĩnh vực không thể thiếu trong Toán học, nó thường xuyên xuất hiện trong các kì thi học sinh giỏi các cấp. Khác với các bài toán trong lĩnh vực Giải tích, Đại số, Lượng giác. các bài toán Tổ hợp thường liên quan đến các đối tượng là các tập hợp hữu hạn. Chính vì thế các bài toán này thường mang những nét đặc trưng riêng của Toán học rời rạc. Nguyên lí cực hạn hay còn gọi là nguyên lí khởi nguồn cực hạn có phát biểu khá đơn giản: Một tập hợp hữu hạn (khác rỗng) các số thực bất kì đều có phần tử lớn nhất và phần tử nhỏ nhất. Nhờ có nguyên lí này ta có thể xét các phần tử của một đại lượng nào đó có giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn: – Xét đoạn thẳng lớn nhất (nhỏ nhất) trong một số hữu hạn đoạn thẳng. – Xét góc lớn nhất (nhỏ nhất) trong một số hữu hạn góc. – Xét đa giác có diện tích hoặc chu vi lớn nhất (nhỏ nhất) trong một hữu hạn đa giác. – Xét khoảng cách lớn nhất (nhỏ nhất) trong một số hữu hạn khoảng cách giữa hai điểm hoặc khoảng cách từ một điểm đến một khoảng cách. – Xét các điểm là đầu mút của một đoạn thẳng, xét các điểm ở phía trái nhất hoặc ở phía phải nhất của đoạn thẳng. Chúng ta sẽ tìm hiểu về những ứng dụng của phương pháp này trong các bài toán Hình học, Đại số, Số học. Trong Hình học, chúng ta sẽ áp dụng vào các Đại lượng đa dạng như độ dài các cạnh, đại lượng góc, khoảng cách đoạn thẳng. Còn trong Đại số và Số học, Đại lượng cực hạn là số nhỏ nhất, số lớn nhất. Nội dung : Phần 1. MỘT SỐ VÍ DỤ MỞ ĐẦU. Phần 2. NGUYÊN LÍ CỰC HẠN TRONG HÌNH HỌC. 2.1. Góc lớn nhất hoặc góc nhỏ nhất. 2.2. Khoảng cách lớn nhất hoặc nhỏ nhất. 2.3. Diện tích và chu vi lớn nhất hoặc nhỏ nhất. 2.4. Bao lồi và đường thẳng tựa. 2.5. Bài tập. Phần 3. SỬ DỤNG NGUYÊN LÍ CỰC HẠN TRONG ĐẠI SỐ VÀ SỐ HỌC. 3.1. Các bài toán số học. 3.2. Các bài toán đại số. 3.3. Bài tập. Phần 4. NGUYÊN LÍ THỨ TỰ TRONG TẬP SỐ TỰ NHIÊN. 4.1 Nguyên lí thứ tự. 4.2.Nguyên lí quy nạp toán học. 4.3 Sự tương đương giữa hai nguyên lí. Dù cố gắng nhiều nhưng chuyên đề không tránh khỏi sai sót, rất mong nhận được sự đóng góp từ các thầy, cô giáo và các em học sinh. Hi vọng rằng chuyên đề này sẽ giúp các bạn bớt khó khăn khi nghiên cứu Tổ hợp, đồng thời giúp các bạn tìm thấy vẻ đẹp sáng tạo của Toán học khi giải loại toán này. Cuối cùng, tác giả xin chân thành cảm ơn các bạn với những đóng góp ý kiến bổ ích.
Phương trình hàm qua các cuộc thi trên thế giới năm 2022
Tài liệu gồm 53 trang, được biên soạn bởi tác giả Đoàn Quang Đăng, tuyển chọn các bài toán phương trình hàm qua các cuộc thi trên thế giới năm 2022, có đáp án và lời giải chi tiết; hỗ trợ học sinh ôn tập chuẩn bị cho kỳ thi học sinh giỏi Toán THPT. Mục lục : 1 Đề bài 2. 1.1 Phương trình hàm trên tập số thực 2. 1.2 Phương trình hàm trên tập số thực dương 3. 1.3 Phương trình hàm trên tập rời rạc 4. 1.4 Bất phương trình hàm 5. 2 Lời giải 6. 2.1 Phương trình hàm trên tập số thực 6. 2.2 Phương trình hàm trên tập các số thực dương 23. 2.3 Phương trình hàm trên tập rời rạc 38. 2.4 Bất phương trình hàm 47.