Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kỳ 2 Toán 12 năm 2021 - 2022 trường Lương Ngọc Quyến - Thái Nguyên

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 12 năm học 2021 – 2022 trường THPT Lương Ngọc Quyến, tỉnh Thái Nguyên; đề thi có đáp án mã đề 001. Trích dẫn đề cuối học kỳ 2 Toán 12 năm 2021 – 2022 trường Lương Ngọc Quyến – Thái Nguyên : + Một khuôn viên dạng nửa hình tròn, trên đó người ta thiết kế phần trồng hoa hồng có dạng một hình parabol có đỉnh trùng với tâm hình tròn và có trục đối xứng vuông góc với đường kính của nửa đường tròn, hai đầu mút của parabol nằm trên đường tròn và cách nhau một khoảng bằng 4 mét (phần tô đậm). Phần còn lại của công viên (phần không tô đậm) dùng để trồng hoa cúc. Biết các kích thước cho như hình vẽ. Chi phí để trồng hoa hồng và hoa cúc lần lượt là 120.000 đồng/m2 và 80.000 đồng/m2. Hỏi chi phí trồng hoa khuôn viên đó gần nhất với số tiền nào dưới đây (làm tròn đến nghìn đồng)? A. 6.847.000 đồng. B. 6.865.000 đồng. C. 5.710.000 đồng. D. 5.701.000 đồng. + Cho hai quả bóng A, B di chuyển ngược chiều nhau va chạm với nhau. Sau va chạm mỗi quả bóng nảy ngược lại một đoạn thì dừng hẳn. Biết sau khi va chạm, quả bóng A nảy ngược lại với vận tốc vA(t) = 8 − 2t (m/s) và quả bóng B nảy ngược lại với vận tốc vB(t) = 12 − 4t (m/s). Tính khoảng cách giữa hai quả bóng sau khi đã dừng hẳn (Giả sử hai quả bóng đều chuyển động thẳng). A. 32 mét. B. 36 mét. C. 34 mét. D. 30 mét. + Trong không gian với hệ toạ độ Oxyz cho ba điểm A B C. Tìm tọa độ điểm D sao cho tứ giác ABCD (theo thứ tự các đỉnh) là hình bình hành?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Phú Lâm - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng … năm 2019, trường THPT Phú Lâm, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM có mã đề 985, đề thi có 07 trang với 30 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Phú Lâm – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho điểm I(2;1;-3) và mặt phẳng (P) có phương trình là 3x + y – 2z + 1 = 0. a) Viết phương trình mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P). b) Tìm tọa độ tiếp điểm của mặt cầu (S) và mặt phẳng (P). [ads] + Cho số phức z = a – bi (a và b thuộc R). Mệnh đề nào sau đây đúng? A. Số phức z có phần thực bằng b, phần ảo bằng a. B. Số phức z có phần thực bằng a, phần ảo bằng b. C. Số phức z có phần thực bằng a, phần ảo bằng -b. D. Số phức z có phần thực bằng a, phần ảo bằng -bi. + Trong không gian Oxyz, cho tam giác ABC có A(1;1;1), B( 1;0;3), C(6;8;-10). Gọi M, N, K lần lượt là hình chiếu của trọng tâm tam giác ABC lên các trục Ox, Oy, Oz. Khi đó, mặt phẳng (MNK) có phương trình là?
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THCS - THPT Thái Bình - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 05 năm 2019, trường THCS – THPT Thái Bình, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM có mã đề 174, đề thi có 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, phần trắc nghiệm chiếm 7,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THCS – THPT Thái Bình – TP HCM : + Trên mặt phẳng tọa độ, tập hợp điểm biểu diễn số phức z thỏa mãn điều kiện |z + 3 – 4i| ≤ 9 là: A. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, kể cả đường tròn đó. B. đường tròn tâm I (−3;4), bán kính R = 9. C. hình tròn giới hạn bởi đường tròn tâm I (3;-4), bán kính R = 9, kể cả đường tròn đó. D. hình tròn giới hạn bởi đường tròn tâm I (−3;4), bán kính R = 9, không kể đường tròn đó. + Trong không gian với hệ toạ độ (Oxyz), cho điểm A(1;2;-2) và mặt phẳng (P): 2x – 11y + 10z – 35 = 0 và. a) Viết phương trình tham số của đường thẳng OA. b) Tính khoảng cách từ A đến mặt phẳng (P). c) Viết phương trình mặt cẩu tâm A và tiếp xúc với mặt phẳng (P). + Tính diện tích hình phẳng giới hạn bởi đường cong (C ): y = x^3 – 3x và đường thẳng (d): y = x.
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Đa Phước - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 04 năm 2019, trường THPT Đa Phước, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Đa Phước – TP HCM có mã đề 468, đề thi có 04 trang với 30 câu trắc nghiệm và 05 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Đa Phước – TP HCM : + Điểm nào trong hình vẽ bên (hình 16) là điểm biểu diễn của số phức thuộc đường tròn (C): x2 + y2 = 13. A. Điểm C, B, E. B. Điểm D, G, F. C. Điểm A, E, C. D. Điểm A, D, F, G. + Trong không gian Oxyz, cho các điểm A(1;2;0), B(−3;4;2). Tìm tọa độ điểm I trên trục Ox cách đều hai điểm A, B và viết phương trình mặt cầu tâm I, đi qua hai điểm A, B. + Trong không gian Oxyz, cho điểm A(2;-1;0) và mặt phẳng (P): x – 2y – 3z + 10 = 0. Phương trình của mặt phẳng (Q) đi qua A và song song với mặt phẳng (P) là?
Đề thi học kì 2 Toán 12 năm 2018 - 2019 trường THPT Thủ Khoa Huân - TP HCM
Nhằm kiểm tra đánh giá chất lượng môn Toán 12 giai đoạn cuối học kì 2, ngày … tháng 05 năm 2019, trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra học kì 2 môn Toán 12 năm học 2018 – 2019. Đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Thủ Khoa Huân – TP HCM có mã đề 001, đề thi có 06 trang với 30 câu trắc nghiệm và 06 câu tự luận, phần trắc nghiệm chiếm 6,0 điểm, phần tự luận chiếm 4,0 điểm, thời gian làm bài là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2018 – 2019 trường THPT Thủ Khoa Huân – TP HCM : + Cho A(1;-1;2), B(3;1;4) và mặt phẳng (α): x + y – z + 1 = 0. Gọi M là điểm thuộc (α), cách đều A và B đồng thời khoảng cách từ M đến đường thẳng AB là nhỏ nhất. Tìm hoành độ của điểm M. + Cho (H) là hình phẳng giới hạn bởi parabol y = √3.x^2, cung tròn có phương trình y = √(4 – x^2) (với 0 ≤ x ≤ 2) và trục hoành (phần gạch sọc trong hình vẽ). Diện tích của (H) bằng? + Gọi S là diện tích của hình phẳng giới hạn bởi các đường y = e^x, y = 0, x = 0, x = 2. Mệnh đề nào dưới đây đúng?