Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng

Nội dung Đề thi HSG lớp 9 môn Toán cấp quận năm 2022 2023 phòng GD ĐT Hải An Hải Phòng Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Đề thi HSG Toán lớp 9 cấp quận năm 2022 - 2023 Hải An, Hải Phòng Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp quận năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND quận Hải An, thành phố Hải Phòng. Đề thi này bao gồm đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Đề thi gồm nhiều câu hỏi khó và phức tạp như: Cho đường tròn (O; R) và một điểm A nằm ngoài đường tròn (O). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O) (B, C là các tiếp điểm. Lấy điểm D thuộc đường tròn (O) sao cho BD // AO. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai E. Gọi M là trung điểm của AC. a) Chứng minh rằng ME là tiếp tuyến của đường tròn (O) b) Gọi T là giao điểm của các đường thẳng ME, BC, I là giao điểm của các đường thẳng DE, BC. Chứng minh OI AT c) Qua E kẻ đường thẳng song song với đường thẳng AB cắt các đường thẳng BC, BD lần lượt tại các điểm P và Q. Chứng minh rằng: PQ = PE Trên bảng ta viết 3 số 1 2 2 2. Mỗi bước ta chọn 2 số a b bất kỳ trên bảng, xóa chúng đi và thay bởi 2 số 2 2 a ba b và giữ nguyên số còn lại. Hỏi sau một số hữu hạn bước, ta có thể thu được 3 số 1 2 1 2 2 2 trên bảng được không? Cho các số nguyên dương abc thỏa mãn 222 abc. Chứng minh rằng ab chia hết cho: abc. Đề thi này đòi hỏi sự kiên nhẫn, quan sát kỹ lưỡng và kỹ năng giải quyết vấn đề linh hoạt của các thí sinh. Chúc các em học sinh lớp 9 đạt kết quả cao trong kỳ thi HSG môn Toán cấp quận năm học 2022 - 2023 này!

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 1 năm 2022 2023 liên trường THCS huyện Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Đề HSG Toán lớp 9 vòng 1 năm 2022 – 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An. Trích dẫn một số câu hỏi từ đề thi: + Tìm đa thức dư trong phép chia đa thức f(x) cho đa thức x² – 4x – 5, biết f(x) khi chia cho x – 5 được số dư 14 và khi chia cho x + 1 được số dư 2. + Chứng minh rằng tam giác ABC có trọng tâm G, khi vẽ đường thẳng d cắt các cạnh AB, AC thì tổng AB + AC + AD + AE có giá trị không đổi khi đường thẳng d thay đổi vị trí. + Chứng minh rằng trong tam giác nhọn ABC, có đường cao AD, BE, CF cắt nhau tại H, ta có: EF // BC với A cos và 2AH = 4IK = IM. Các em hãy tự tin và chuẩn bị tốt cho bài thi sắp tới. Chúc các em thành công!
Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương
Nội dung Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Đề khảo sát HSG lớp 9 môn Toán tháng 10 năm 2022 phòng GD ĐT Chí Linh Hải Dương Chào mừng đến với đề khảo sát chất lượng cho đội tuyển học sinh giỏi môn Toán lớp 9 tháng 10 năm học 2022 – 2023 tại phòng Giáo dục và Đào tạo thành phố Chí Linh, tỉnh Hải Dương. Đề khảo sát bao gồm các câu hỏi sau: Tìm các số nguyên dương x, y thỏa mãn phương trình: x(y2 + 1) = 2y(16 – x). Cho a, b, c, k là các số nguyên thỏa mãn: a3 + b3 + c3 − 1 = k2 – 2k – 2a + b – 2c. Chứng minh rằng k − 1 chia hết cho 3. Cho nửa đường tròn (O;R) đường kính BC. A là điểm di động trên nửa đường tròn. Vẽ AH vuông góc với BC tại H. Đường tròn đường kính AH cắt AB, AC lần lượt tại D, E và cắt (O) tại M. AO cắt DE tại I. Tính DE3/BD.CE theo R. Tính: AI/HB + AI/HC. Xác định vị trí của điểm A để diện tích tam giác ABH lớn nhất. Hãy tự tin và cố gắng hết mình để hoàn thành đề khảo sát này. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!
Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022 2023 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Đề khảo sát đội tuyển HSG lớp 9 môn Toán năm 2022-2023 sở GD ĐT Thanh Hóa Sytu xin gửi đến quý thầy cô và các bạn học sinh lớp 9 đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Kỳ thi sẽ được tổ chức vào ngày 07 tháng 09 năm 2022. Dưới đây là một số câu hỏi mẫu trong đề khảo sát: 1. Tìm nghiệm nguyên của phương trình: (x + y)2(1 + xy) + 4xy = 6(x + y). 2. Cho hai số tự nhiên a, b thỏa mãn: a3/(a + b); b3/(b + a) đều là số nguyên tố. Chứng minh rằng a2 + 2b + 1 là số chính phương. 3. Xác định vị trí của điểm C trên nửa đường tròn để độ dài đoạn thẳng JK là lớn nhất. Đây là những câu hỏi đòi hỏi sự tư duy logic, các khái niệm Toán học cơ bản và khả năng giải quyết vấn đề. Chúc các em học sinh có sự chuẩn bị tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội
Nội dung Đề học sinh giỏi Toán cấp quận năm 2022 2023 phòng GD ĐT Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội Sytu xin chào đến quý thầy cô và các em học sinh lớp 9 với đề thi chọn học sinh giỏi môn Toán THCS cấp quận năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND quận Đống Đa, Hà Nội tổ chức. Kỳ thi sẽ diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn một số câu hỏi trong Đề học sinh giỏi Toán cấp quận năm 2022 - 2023 phòng GD&ĐT Đống Đa Hà Nội: Câu 1: Cho các số thực a, b, c thỏa mãn 0 ≤ a, b, c ≤ 2 và a + b + c = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = a2 + b2 + c2. Câu 2: Tìm số tự nhiên n sao cho 2n - 1 chia hết cho 7. Câu 3: Trên bảng viết 100 phân số. Thực hiện trò chơi: tại mỗi bước, xóa đi hai số a, b bất kì trên bảng, và viết thêm số (a - b + ab). Chứng minh rằng sau một số bước thực hiện, trên bảng còn lại đúng một số tự nhiên. Hy vọng các em sẽ cố gắng và tự tin để giải quyết các câu hỏi thú vị này. Chúc quý thầy cô và các em có một kỳ thi thành công!