Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán bậc THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra trong hai ngày: 22/09/2022 (vòng 1) và 23/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Cho trước a, b thuộc N* thỏa mãn a2 + b2 là tích của các số nguyên tố phân biệt và mỗi số nguyên tố đó đều có dạng 8k -3 với k thuộc N*. a) Giả sử tồn tại p = 8l – 3 (l thuộc N*) là một ước nguyên tố của a4 + b4. Chứng minh rằng p là ước của cả a và b. b) Tìm tất cả các cặp (m; n) với m,n thuộc Z mà am + bn và an – bm là các số chính phương. + Với mỗi cặp số nguyên dương (m; n), giả sử ban đầu có m + n hộp được đánh số từ 1 đến m + n, trong đó m hộp đầu tiên mỗi hộp chứa 1 bi đen và n hộp còn lại mỗi hộp chứa 1 bi trắng. Trong mỗi bước, ta được quyền chuyển một bi đen từ hộp i sang hộp i + 1 và một bi trắng từ hộp j sang hộp j – 1 với điều kiện i – j là một số chẵn. Ở đây giả sử rằng mỗi hộp đều đủ lớn để có thể chứa toàn bộ số bi. Cặp số (m; n) được gọi là tốt nếu sau hữu hạn bước chuyển thì n hộp đầu tiên mỗi hộp chứa 1 bi trắng và m hộp còn lại mỗi hộp chứa 1 bi đen. Nếu trái lại thì ta nói (m; n) là cặp xấu. 1) Chứng minh rằng cặp (1; 2021) là cặp xấu. b) Tìm số cặp số nguyên dương (m; n) tốt trong mỗi trường hợp một m + n = 2022 và m + n = 2023. + An và Bình đến cửa hàng mua kẹo. Trong cửa hàng có các túi kẹo loại 1 chiếc, 2 chiếc, 4 chiếc … 2^30 chiếc. Mỗi loại có nhiều túi. Mỗi bạn chọn mua một số túi ở nhiều loại và mỗi loại có thể mua nhiều túi. a) Số túi ít nhất An cần phải mua để có đúng 1000 chiếc kẹo là bao nhiêu? b) Có bao nhiêu cách chọn 5 túi kẹo đôi một khác loại sao cho tổng số chiếc kẹo được chọn không vượt quá 2023 và nếu túi loại 2^n được chọn (n thuộc N và n =< 29) thì túi loại 2^n+1 không được chọn? c) Giả sử sau khi mua, An và Bình lần lượt có n và n + 1 (n thuộc N và 0 =< n =< 2023) chiếc kẹo, đồng thời An có nhiều hơn Bình 7 túi kẹo. Có bao nhiêu giá trị n thỏa mãn các điều kiện trên, biết An và Bình luôn mua ít túi nhất có thể?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT An Giang : + Người ta dùng bốn màu: Xanh, Đỏ, Tím, Vàng để sơn 15 thanh chắn lắp song song và cách đều nhau của một ngôi trường mẫu giáo. Hỏi có bao nhiêu cách sơn sao cho hai thanh kề nhau thì khác màu và hai thanh đối xứng nhau qua thanh chính giữa thì cùng màu? + Một con cào cào nhảy ngẫu nhiên trên bốn chiếc lá. Trong mỗi lượt, xác suất để cào cào nhảy tới mỗi chiếc lá trong ba chiếc lá còn lại đều bằng 1 3. Tính xác suất để con cào cào qua bốn lần nhảy quay trở lại vị trí ban đầu? + Trong mặt phẳng tọa độ Oxy, cho elip (𝐸): 𝑥 2 25 𝑦 2 16 1 và điểm 𝑀(2; 1). Viết phương trình đường thẳng (𝑑) đi qua điểm 𝑀 cắt (𝐸) tại hai điểm 𝐴, 𝐵 sao cho trung điểm của đoạn thẳng 𝐴𝐵 nằm trên đường thẳng (∆): 𝑦 = 2𝑥.
Đề học sinh giỏi cấp tỉnh Toán 12 đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT (không chuyên) đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án trắc nghiệm mã đề 001. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho khối lăng trụ ABC A B C có hình chiếu của điểm A trên mặt phẳng (ABC) là trung điểm cạnh B C góc giữa cạnh bên và đáy bằng 60°. Biết khoảng cách giữa BB’ và CC’ bằng 2a khoảng cách từ A đến các đường thẳng BB’ và CC’ lần lượt bằng a và a 3. Tính thể tích V của khối lăng trụ đã cho. + Cho hàm số y fx là hàm đa thức bậc bốn và có đồ thị hàm số y fx như hình vẽ bên dưới. Biết bất phương trình 2 8 fx m fx m luôn nghiệm đúng với mọi x thuộc (-1;4). Khi đó mệnh đề nào dưới đây đúng? + Cho hình trụ (T) và tứ diện ABCD đều cạnh a thỏa điều kiện AB là một đường sinh của (T) và hai đỉnh C D nằm trên mặt xung quanh của (T) (tham khảo hình vẽ bên dưới). Tính bán kính đáy R của hình trụ (T) theo a.
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 - 2024 sở GDĐT Long An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi văn hóa môn Toán THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Long An; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2023 – 2024 sở GD&ĐT Long An : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D có CD AD AB 2. Gọi M(2;4) là điểm thuộc cạnh AB sao cho AB AM 3. Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2 80 x y. Tìm tọa độ đỉnh B của hình thang ABCD biết D thuộc đường thẳng dx y 0 và điểm A thuộc đường thẳng d xy 3 8 0. + Cho tập hợp X = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Gọi S là tập hợp các số nguyên dương gồm có sáu chữ số thỏa mãn điều kiện sau: “sáu chữ số của mỗi số nguyên dương trong S lập thành một tập hợp chứa đúng ba phần tử của tập X”. Tìm số phần tử của tập hợp S. + Có hai tàu A và B cùng phía với con đường bờ biển. Biết tàu A, tàu B lần lượt cách con đường bờ biển là 3 hải lí và 6 hải lí; khoảng cách giữa hai tàu A và B là 5 hải lí (như hình vẽ bên dưới). Người ta muốn xây dựng một trạm nhiên liệu dọc theo con đường bờ biển. Hỏi phải đặt trạm nhiên liệu cách tàu A bao nhiêu hải lí để tổng khoảng cách từ trạm nhiên liệu đến hai tàu A và B là ngắn nhất?
Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT đợt 1 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán THPT đợt 1 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC). Đường tròn (O) lần lượt tiếp xúc với ba cạnh AB, BC, CA tại ba điểm M, N, K. Gọi S, R lần lượt là giao điểm của đường phân giác ngoài góc A của tam giác ABC với hai đường thẳng KN, MN. Gọi I là giao điểm của hai đường thẳng MS và KR, đường thẳng AN cắt đường tròn (O) tại điểm thứ hai là J. a) Chứng minh I thuộc (O) và sin MKN sin KMN KI KJ. b) Đường tròn ngoại tiếp tam giác AMK cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D, OD cắt MK tại E. Gọi (T) là đường tròn đi qua D và tiếp xúc với BC tại N. Chứng minh (T) tiếp xúc với đường tròn ngoại tiếp tam giác ABC và EN là đường phân giác của góc BEC. + Tô màu tất cả các đỉnh của đa giác đều (T) có 12 đỉnh bằng hai màu khác nhau, mỗi đỉnh tô một màu. a) Hỏi có bao nhiêu cách tô màu sao cho không có tam giác đều nào mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))? b) Hỏi có bao nhiêu cách tô màu sao cho có ít nhất một đa giác đều mà tất cả các đỉnh của nó cùng màu (các đỉnh của nó là đỉnh của (T))?