Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Duy Tiên Hà Nam

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Duy Tiên Hà Nam Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021-2022 phòng GD&ĐT Duy Tiên - Hà Nam Đề học sinh giỏi Toán lớp 8 năm 2021-2022 phòng GD&ĐT Duy Tiên - Hà Nam Sytu xin gửi đến toàn thể quý thầy cô và các em học sinh lớp 8 đề kiểm tra chất lượng học sinh giỏi môn Toán lớp 8 năm học 2021-2022 từ phòng Giáo dục và Đào tạo thị xã Duy Tiên, tỉnh Hà Nam. Nội dung đề học sinh giỏi Toán lớp 8 năm 2021-2022 từ phòng GD&ĐT Duy Tiên - Hà Nam bao gồm những yêu cầu sau: 1. Cho ba số x, y, z khác 0 thỏa mãn điều kiện. Chứng minh rằng trong ba số x, y, z tồn tại hai số đối nhau. 2. Cho đa thức f(x). Biết dư trong các phép chia f(x) cho x - 1 và x + 1 lần lượt là 1 và 3. Hãy tìm dư trong phép chia f(x) cho x2 - 1. 3. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. a) Chứng minh rằng tứ giác AEMD là hình chữ nhật. b) Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. c) Chứng minh rằng AD2 = AM2 + AN2.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 8 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp thành phố môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 8 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC nhọn (AB < AC), đường cao AD, CF cắt nhau tại H. Gọi M là điểm thuộc đoạn thẳng DC sao cho BM < 2BD. Qua A vẽ đường thẳng vuông góc với AM cắt CH tại K. a. Chứng minh rằng: KAH AMB. b. Lấy G đối xứng với H qua K. Gọi P là trung điểm của BM. Chứng minh: AG AP. c. Khi BM = 2MC, gọi N là giao điểm của AG và BH. Chứng minh: AG = 2AN. + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Chọn ngẫu nhiên một số tự nhiên có 4 chữ số. Tính xác suất để số được chọn là số có 4 chữ số thỏa mãn chữ số đứng sau lớn hơn chữ số đứng trước.