Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Bác Hoàng gửi vào ngân hàng 500 triệu đồng theo thể thức lãi kép theo định kì với lãi suất 5,5% mỗi năm (tức là nếu đến hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn kì kế tiếp). Tính số tiền bác Hoàng nhận được sau 3 năm là (cả gốc và lãi). + Đường quốc lộ và đường ống dẫn dầu cắt nhau tạo thành một góc nhỏ hơn 45o, trong góc này có bãi đỗ xe ô tô ở vị trí A (hình vẽ). Cần phải xây trạm cung cấp xăng ở vị trí nào trên đường ống để các loại xe xuất phát từ bãi đỗ xe A đến cây xăng rồi ra đường quốc lộ với đường đi ngắn nhất. + Cho hình vuông ABCD, trên cạnh AB lấy điểm M bất kỳ (không trùng với A, B). Gọi H là chân đường vuông góc hạ từ B xuống MC. 1. Chứng minh: BH2 = HM.HC. 2. Đường thẳng qua D vuông góc với DM cắt đường thẳng BC tại K; đường thẳng qua D vuông góc với MK cắt BC tại E. Chứng minh: ∆ KDM vuông cân và ∆ DKE đồng dạng với ∆ BKD. 3. Trên cạnh BC lấy điểm N sao cho BN = BM. Chứng minh rằng: khi điểm M di chuyển trên cạnh AB thì góc DHN luôn có số đo không đổi.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Hà Trung - Thanh Hóa
Thứ Sáu ngày 09 tháng 04 năm 2021, phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 8 cấp huyện năm học 2020 – 2021. Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho tam giác đều ABC. Gọi O là trung điểm của BC. Trên cạnh AB và AC lần lượt lấy các điểm di động M và N sao cho MON = 600. Chứng minh rằng: 1) OMB đồng dạng với ONC từ đó suy ra tích BM.CN không đổi. 2) Các tia MO, NO lần lượt là tia phân giác của góc BMN và CNM. 3) Chu vi tam giác AMN không đổi. + Xác định đa thức f(x) biết: f(x) chia cho x – 1 dư 4; chia cho x + 2 dư 1 và chia cho x2 + x – 2 được thương là 5x. + Tìm số tự nhiên k để 4 7 2 2 2 k là số chính phương.
Đề thi HSG Toán 8 năm 2020 - 2021 trường THCS Trung Nguyên - Vĩnh Phúc
Thứ Ba ngày 30 tháng 03 năm 2021, trường THCS Trung Nguyên, huyện Yên Lạc, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng đội tuyển học sinh giỏi cấp huyện môn Toán lớp 8 năm học 2020 – 2021. Đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 8 năm 2020 – 2021 trường THCS Trung Nguyên – Vĩnh Phúc : + Cho các số nguyên a, b, c thỏa mãn 2a + b, 2b + c, 2c + a đều là các số chính phương. Biết rằng một trong ba số chính phương trên chia hết cho 3. + Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là AB vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. a) Chứng minh AB CA = 4BD AB. b) Kẻ OM vuông góc với CD tại M, từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của MH. c) Tìm vị trí điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. + Năm vận động viên mang số 1; 2; 3; 4 và 5 được chia bằng mọi cách thành hai nhóm. Chứng tỏ rằng ở một trong hai nhóm ta luôn có hai vận động viên mà hiệu các số họ mang trùng với một trong các số mà người của nhóm đó mang.
Đề thi HSG huyện Toán 8 năm 2020 - 2021 phòng GDĐT Kỳ Anh - Hà Tĩnh
Đề thi HSG huyện Toán 8 năm 2020 – 2021 phòng GD&ĐT Kỳ Anh – Hà Tĩnh gồm 01 trang với 13 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề thi học sinh giỏi cấp tỉnh Toán 8 năm 2020 - 2021 sở GDĐT Bắc Ninh
Đề thi học sinh giỏi cấp tỉnh Toán 8 năm học 2020 – 2021 sở GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được tổ chức ngày 18 tháng 03 năm 2021.