Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 11 năm 2023 - 2024 trường THPT Trần Hưng Đạo - Ninh Bình

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2023 – 2024 trường THPT Trần Hưng Đạo, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 132 209. Trích dẫn Đề học kỳ 1 Toán 11 năm 2023 – 2024 trường THPT Trần Hưng Đạo – Ninh Bình : + Công ty A muốn thuê hai mảnh đất để làm hai nhà kho, một mảnh thuê 10 năm và một mảnh thuê 15 năm ở hai chỗ khác nhau. Công ty bất động sản C, công ty bất động sản B đều muốn cho thuê. Hai công ty đưa ra phương án cho thuê như sau. Công ty C: Năm đầu tiên tiền thuê đất là 60 triệu và kể từ năm thứ hai trở đi mỗi năm tăng thêm so với năm liền trước nó là 3 triệu đồng. Công ty B: Trả tiền theo quí, quý đầu tiên là 8 triệu đồng và từ quý thứ hai trở đi mỗi quý tăng thêm so với quí liền trước nó là 500 000 đồng. Hỏi công ty A nên lựa chọn thuê đất của công ty bất động sản nào để chi phí là thấp nhất biết rằng các mảnh đất cho thuê về diện tích, độ tiện lợi đều như nhau? A. Chọn công ty B để thuê cả hai mảnh đất. B. Chọn công ty C để thuê cả hai mảnh đất. C. Chọn công ty C để thuê đất 10 năm, công ty B thuê đất 15 năm. D. Chọn công ty B để thuê đất 10 năm, công ty C thuê đất 15 năm. + Cho hình chóp S.ABCD, đáy là hình bình hành tâm O. Gọi M và N lần lượt là trung điểm của SA và CD. a) Chứng minh đường thẳng SC song song với mặt phẳng (OMN). b) Giả sử tam giác SAD và tam giác ABC là các tam giác cân tại A. Gọi AE và AF lần lượt là các đường phân giác trong của các tam giác ACD và SAB. P là điểm thuộc AB sao cho BP = CE. Chứng minh (EFP) song song với mặt phẳng (SAD). + Tứ diện ABCD có tất cả các cạnh bằng a, I là trung điểm của AC, J là một điểm trên cạnh AD sao cho AJ JD 2. (P) là mặt phẳng chứa IJ và song song với AB. Gọi E là giao điểm của đường thẳng CD và mặt phẳng (P) thì tỷ số ED EL là?

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.