Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc

Nội dung Đề giao lưu HSG lớp 8 môn Toán năm 2016 2017 phòng GD ĐT Tam Dương Vĩnh Phúc Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Đề giao lưu HSG lớp 8 môn Toán năm 2016-2017 phòng GD ĐT Tam Dương Vĩnh Phúc Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 8 đề giao lưu HSG Toán lớp 8 năm 2016-2017 của phòng GD&ĐT Tam Dương - Vĩnh Phúc. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu trong đề giao lưu HSG Toán lớp 8 năm 2016-2017 phòng GD&ĐT Tam Dương - Vĩnh Phúc: - Cho tam giác ABC, đường trung tuyến AM. Qua điểm D thuộc cạnh BC, vẽ đường thẳng song song với AM cắt đường thẳng AB và AC lần lượt tại E và F. Chứng minh rằng DE + DF = 2AM. - Đường thẳng qua A song song với BC cắt EF tại N. Chứng minh rằng N là trung điểm của EF. - Trong một đề thi có 3 bài toán A, B, C. Có 25 học sinh mỗi người đều đã giải được ít nhất một trong 3 bài đó. Hỏi có bao nhiêu thí sinh chỉ giải được bài B? - Cho hai đa thức A = n^6 + 10n^4 + n^3 + 98n - 6n^5 - 26 và B = 1 + n^3 - n. Chứng minh với mọi số nguyên n, thương của phép chia A cho B là bội số của 6. Hy vọng đề giao lưu này sẽ giúp các em học sinh lớp 8 củng cố kiến thức và chuẩn bị tốt cho kỳ thi HSG sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Biết rằng đa thức f(x) khi chia cho x – 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x2 + x – 6. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (n thuộc N) đều là các số chính phương thì n chia hết cho 40. + Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác DBF b) Chứng minh rằng: HD HE HF AD BE CF. + Cho tam giác nhọn ABC có đường cao AH. Trên các đoạn AH, AB, AC lần lượt lấy các điểm D, E, F sao cho EDC = FDB = 90 độ (E khác B). Chứng minh: EF // BC.
Đề Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2) = 10 và P(−2) = −6. Tìm đa thức P(x) biết đa thức P(x) chia cho đa thức x2 – 4 được thương là (2x + 6) và còn dư. + Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B, khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ cùng ngày và vận tốc theo thứ tự là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? + Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. a/ Tứ giác AMDB là hình gì? b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh: EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh: Tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Giả sử CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16. Tính các cạnh của hình chữ nhật ABCD.
Đề HSG Toán 8 vòng 2 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp trường vòng 2 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Tìm số tự nhiên n để n + 18 và n − 41 là hai số chính phương. Cho a là số nguyên. Chứng minh rằng 3 a a 2023 chia hết cho 6. + Cho tam giác ABC vuông tại A (AB AC) có AD là tia phân giác của BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC E là giao điểm của BN và DM F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh H là trực tâm ∆AEF. c) Gọi giao điểm của AH và DM là K, giao điểm của AH và BC là O, giao điểm của BK và AD là I. Chứng minh: 9 BI AO DM KI KO KM. + Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh rằng tồn tại ba đỉnh được sơn cùng một màu tạo thành một tam giác cân.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho tam giác ABC cân tại A (góc A nhọn), đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. a) Chứng minh AH HM HC CM. b) Chứng minh AK vuông góc với BM. c) Biết AI = 5cm, HI = 4cm. Tính độ dài cạnh BC. + Xét hình chữ nhật kích thước 3cm x 4 cm. Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật, luôn có thể chọn ra hai điểm có khoảng cách nhỏ hơn 3. Cho hai số thực x, y thỏa mãn x > −1; y > 1 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 1 1 P1 1. + Cho 3 số nguyên dương 123 aaa có tổng bằng 2023 2022. Chứng minh rằng: 333 123 aaa chia hết cho 3.