Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra Toán 12 năm 2018 2019 lần 4 trường Ninh Bình Bạc Liêu Ninh Bình

giới thiệu đến các em học sinh lớp 12 đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình, nhằm giúp các em có thêm đề thi chất lượng, chuẩn cấu trúc, để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình mã đề 131, đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm với 4 đáp án để lựa chọn, học sinh có 90 phút để hoàn thành bài thi thử môn Toán, đề thi có đáp án. [ads] Trích dẫn đề kiểm tra Toán 12 năm 2018 – 2019 lần 4 trường Ninh Bình – Bạc Liêu – Ninh Bình : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho một quân cờ đứng ở vị trí trung tâm của một bàn cờ 9 × 9 (xem hình vẽ). Biết rằng, mỗi lần di chuyển, quân cờ chỉ di chuyển sang ô có cùng một cạnh với ô đang đứng. Tính xác suất để sau bốn lần di chuyển, quân cờ không trở về đúng vị trí ban đầu. + Trong không gian Oxyz cho mặt cầu (S) có phương trình x^2 + y^2 + z^2 − 4x + 2y − 2z − 3 = 0 và điểm A(5; 3;−2). Một đường thẳng d thay đổi luôn đi qua A và luôn cắt mặt cầu tại hai điểm phân biệt M, N. Tính giá trị nhỏ nhất của biểu thức S = AM + 4AN.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra KSCL Toán 12 năm 2018 - 2019 trường Thanh Thủy - Phú Thọ lần 1
Đề kiểm tra KSCL Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ lần 1 mã đề 145 gồm 6 trang được biên soạn theo hình thức trắc nghiệm khách quan 100% với 50 câu hỏi và bài toán, học sinh có 90 phút để làm bài, đề nhằm giúp học sinh rèn luyện các kiến thức Toán 12 đã được học, đồng thời củng cố lại các kiến thức Toán 10, 11 trước đây, nhằm chuẩn bị cho kỳ thi THPT Quốc gia môn Toán về sau. Trích dẫn đề kiểm tra KSCL Toán 12 năm 2018 – 2019 trường Thanh Thủy – Phú Thọ lần 1 : + Mệnh đề nào sau đây đúng? A. Hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song với nhau. B. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau. C. Hai mặt phẳng vuông góc với nhau thì đường thẳng nào nằm trong mặt phẳng này cũng vuông góc với mặt phẳng kia. D. Một đường thẳng vuông góc với một trong hai mặt phẳng song song thì vuông góc với mặt phẳng kia. [ads] + Cho tập hợp A = {2; 3; 4; 5; 6; 7; 8}. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập thành từ các chữ số của tập A. Chọn ngẫu nhiên một số từ S. Xác suất để số được chọn mà trong mỗi số luôn luôn có mặt hai chữ số chẵn và hai chữ số lẻ là? + Một con đường được xây dựng giữa hai thành phố A, B. Hai thành phó này bị ngăn cách một con sông có chiều rộng r(m). Người ta cần xây 1 cây cầu bắc qua sông biết rằng A cách con sông một khoảng bằng 2m, B cách con sông một khoảng bằng 4m. Để tổng khoảng cách giữa các thành phố là nhỏ nhất thì giá trị x(m) bằng?
Đề kiểm tra định kỳ Toán 12 năm 2018 - 2019 trường Nguyễn Khuyến - TP. HCM lần 5
Đề kiểm tra định kỳ Toán 12 năm 2018 – 2019 trường Nguyễn Khuyến – TP. HCM lần 5 gồm 4 mã đề 501, 502, 503 được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, yêu cầu học sinh làm bài trong 90 phút, kỳ thi được diễn ra vào ngày 04/11/2018, đề gồm các câu hỏi và bài toán giới hạn trong nội dung chương trình Toán 12 đã học, đây là kỳ thi được tổ chức thường xuyên tại trường THCS và THPT Nguyễn Khuyến, Thành phố Hồ Chí Minh nhằm giúp học sinh rèn luyện thường xuyên để nâng cao năng lực, đồng thời giáo viên theo dõi được quá trình tiến bộ của các em, đề thi có đáp án. Trích dẫn đề kiểm tra định kỳ Toán 12 năm 2018 – 2019 trường Nguyễn Khuyến – TP. HCM lần 5 : + Cho hàm số f(x) = −x^4 − 1. Trong các khẳng định sau, khẳng định nào đúng? A. Hàm số f(x) có một điểm cực đại và một điểm cực tiểu. B. Hàm số f(x) không có điểm cực trị. C. Hàm số f(x) có một điểm cực đại và không có điểm cực tiểu. D. Hàm số f(x) có một điểu cực tiểu và không có điểm cực đại. [ads] + Tập hợp các giá trị của tham số m để đồ thị hàm số y = −x^3 + (m + 2)x^2 − 3m + 3 có hai điểm phân biệt đối xứng nhau qua gốc tọa độ là? + Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d (a, b, c, d là các hằng số và a ≠ 0) có đồ thị (C). Biết (C) cắt trục hoành tại 3 điểm phân biệt M, N, P và các tiếp tuyến của (C) tại M, N có hệ góc là −6 và 2. Gọi k là hệ số góc của tiếp tuyến của (C) tại P. Chọn mệnh đề đúng.
Đề thi KSCL Toán 12 năm 2018 - 2019 trường THPT Sơn Tây - Hà Nội lần 1
Đề thi KSCL Toán 12 năm 2018 – 2019 trường THPT Sơn Tây – Hà Nội lần 1 mã đề 125 gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, các câu hỏi trong chứa kiến thức Toán 11 và Toán 12 đã học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi KSCL Toán 12 năm 2018 – 2019 trường THPT Sơn Tây – Hà Nội lần 1 : + Cho hình chóp S.ABCD có đáy là hình bình hành. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là? A. Đường thẳng đi qua S và song song với AB. B. Đường thẳng đi qua S và song song với BD. C. Đường thẳng đi qua S và song song với AD. D. Đường thẳng đi qua S và song song với AC. [ads] + Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, tam giác SAB đều. Gọi M là điểm trên cạnh AD sao cho AM = x, x ∈ (0;a). Mặt phẳng (α) đi qua M và song song với (SAB) lần lượt cắt các cạnh CB, CS, SD tại N, P, Q. Tìm x để diện tích tứ giác MNPQ bằng 2a^2.√3/9. + Người ta trồng 3240 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, kể từ hàng thứ hai trở đi số cây trồng mỗi hàng nhiều hơn 1 cây so với hàng liền trước nó. Hỏi có tất cả bao nhiêu hàng cây?
Đề thi KSCL THPT Quốc gia 2019 Toán 12 trường Nguyễn Viết Xuân - Vĩnh Phúc lần 1
Đề thi KSCL THPT Quốc gia 2019 Toán 12 trường Nguyễn Viết Xuân – Vĩnh Phúc lần 1 mã đề 101 gồm 6 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, đề thi nhằm kiểm tra chất lượng giữa học kỳ 1, đồng thời giúp các em làm quen sớm với cấu trúc đề thi THPT Quốc gia môn Toán để các em lớp 12 có định hướng học tập phù hợp, các câu hỏi trong đề chứa kiến thức Toán 10, Toán 11 và Toán 12 đã được học, đề thi có đáp án. Trích dẫn đề thi KSCL THPT Quốc gia 2019 Toán 12 trường Nguyễn Viết Xuân – Vĩnh Phúc lần 1 : + Trong mặt phẳng tọa độ Oxy, cho đương tròn (C): (x – 1)^2 + (y – 2)^2 = 4 và các đường thẳng (d1): mx + y – m – 1 = 0, (d2): x – my + m – 1 = 0. Tìm các giá trị của tham số m để mỗi đường thẳng (d1), (d2) cắt (C) tại 2 điểm phân biệt sao cho 4 điểm đó lập thành 1 tứ giác có diện tích lớn nhất. Khi đó tổng của tất cả các giá trị tham số m là? [ads] + Hãy xác định tổng các giá trị của tham số m để đường thẳng y = f(x) = m(x + 1) + 2 cắt đồ thị hàm số y = g(x) = x^3 – 3x (C) tại ba điểm phân biệt A, B, C (A là điểm cố định) sao cho tiếp tuyến với đồ thị (C) tại B và C vuông góc với nhau. + Cho hình chóp S.ABC đáy ABC là tam giác đều, cạnh bên SA vuông góc với đáy. Gọi M, N lần lượt là trung điểm của AB và SB. Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai?