Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 8 năm 2023 - 2024 trường THCS Khánh Yên - Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp trường môn Toán 8 năm học 2023 – 2024 trường THCS Khánh Yên, huyện Văn Bàn, tỉnh Lào Cai. Trích dẫn Đề học sinh giỏi Toán 8 năm 2023 – 2024 trường THCS Khánh Yên – Lào Cai : + Trong trò chơi rung chuông vàng trên sàn đấu có 120 học sinh được đánh số thứ tự từ 1 đến 120. Chọn ngẫu nhiên một học sinh để phỏng vấn. Tính xác suất của biến cố. 1. A : “Học sinh được chọn mang số tròn chục”. 2. B: “ Học sinh được chọn mang số chia cho 17 dư 2 và chia cho 3 dư 1”. + Để đánh máy một bản thảo cuốn sách gồm 71 trang, hai cô nhân viên văn phòng Nhung và Hoa cùng đánh máy trong 4 giờ, ngoài ra cô Hoa còn phải làm thêm 2,5 giờ nữa mới xong. Nếu cả cô Nhung và cô Hoa cùng đánh máy trong 4,75 giờ thì để hoàn thành công việc, cô Hoa chỉ cần làm thêm 45 phút nữa. Hỏi mỗi cô đánh máy riêng một mình thì trong một giờ đánh máy được bao nhiêu trang. + Bạn Hà làm một cái lồng đèn hình quả trám (xem hình bên) là hình ghép từ hai hình chóp tứ giác đều có cạnh đáy 20 cm, cạnh bên 32 cm, khoảng cách giũa hai đỉnh của hai hình chóp là 30 cm. a) Tính thể tích của lồng đèn. b) Bạn Hà muốn làm 50 cái lồng đèn như này, cần phải chuẩn bị bao nhiêu mét thanh tre? (mối nối giữa các que tre có độ dài không đáng kể).

Nguồn: toanmath.com

Đọc Sách

Đề HSG cấp huyện Toán 8 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Trích dẫn Đề HSG cấp huyện Toán 8 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Biết rằng đa thức f(x) khi chia cho x – 2 thì được số dư là 6067; khi chia cho x + 3 thì được số dư là -4043. Tìm đa thức dư khi chia đa thức f(x) cho đa thức x2 + x – 6. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (n thuộc N) đều là các số chính phương thì n chia hết cho 40. + Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác DBF b) Chứng minh rằng: HD HE HF AD BE CF. + Cho tam giác nhọn ABC có đường cao AH. Trên các đoạn AH, AB, AC lần lượt lấy các điểm D, E, F sao cho EDC = FDB = 90 độ (E khác B). Chứng minh: EF // BC.
Đề Olympic Toán 8 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 8 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2) = 10 và P(−2) = −6. Tìm đa thức P(x) biết đa thức P(x) chia cho đa thức x2 – 4 được thương là (2x + 6) và còn dư. + Một xe đạp, một xe máy và một ô tô cùng đi từ A đến B, khởi hành lần lượt lúc 5 giờ, 6 giờ, 7 giờ cùng ngày và vận tốc theo thứ tự là 15 km/h, 35 km/h, 55 km/h. Hỏi lúc mấy giờ thì ô tô cách đều xe đạp và xe máy? + Cho hình chữ nhật ABCD, AC cắt BD tại O, trên đoạn OD lấy điểm P bất kỳ. Gọi M là điểm đối xứng với C qua P. a/ Tứ giác AMDB là hình gì? b/ Gọi E, F lần lượt là hình chiếu của M trên AD, AB. Chứng minh: EF // AC và ba điểm E, F, P thẳng hàng. c/ Chứng minh: Tỉ số các cạnh của hình chữ nhật AEMF không phụ thuộc vào vị trí của điểm P trên OD. d/ Giả sử CP vuông góc BD, CP = 2,4 cm và PD/PB = 9/16. Tính các cạnh của hình chữ nhật ABCD.
Đề HSG Toán 8 vòng 2 năm 2022 - 2023 liên trường THCS huyện Diễn Châu - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 cấp trường vòng 2 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề HSG Toán 8 vòng 2 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An : + Tìm số tự nhiên n để n + 18 và n − 41 là hai số chính phương. Cho a là số nguyên. Chứng minh rằng 3 a a 2023 chia hết cho 6. + Cho tam giác ABC vuông tại A (AB AC) có AD là tia phân giác của BAC. Gọi M và N lần lượt là hình chiếu của D trên AB và AC E là giao điểm của BN và DM F là giao điểm của CM và DN. a) Chứng minh tứ giác AMDN là hình vuông và EF BC. b) Gọi H là giao điểm của BN và CM. Chứng minh H là trực tâm ∆AEF. c) Gọi giao điểm của AH và DM là K, giao điểm của AH và BC là O, giao điểm của BK và AD là I. Chứng minh: 9 BI AO DM KI KO KM. + Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh rằng tồn tại ba đỉnh được sơn cùng một màu tạo thành một tam giác cân.
Đề học sinh giỏi Toán 8 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 8 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho tam giác ABC cân tại A (góc A nhọn), đường cao AH cắt tia phân giác BD tại điểm I. Gọi M là hình chiếu của điểm H trên cạnh AC, K là trung điểm của HM. a) Chứng minh AH HM HC CM. b) Chứng minh AK vuông góc với BM. c) Biết AI = 5cm, HI = 4cm. Tính độ dài cạnh BC. + Xét hình chữ nhật kích thước 3cm x 4 cm. Chứng minh rằng với 7 điểm bất kì nằm trong hình chữ nhật, luôn có thể chọn ra hai điểm có khoảng cách nhỏ hơn 3. Cho hai số thực x, y thỏa mãn x > −1; y > 1 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức 2 2 1 1 P1 1. + Cho 3 số nguyên dương 123 aaa có tổng bằng 2023 2022. Chứng minh rằng: 333 123 aaa chia hết cho 3.