Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Một phòng họp ban đầu có 96 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải cất bớt 2 dãy ghế và mỗi dãy còn lại xếp thêm 1 ghế (số ghế trong các dãy vẫn bằng nhau) để vừa đủ chỗ ngồi cho 110 đại biểu. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn AB = 5cm và AH = 4cm. Tính độ dài đoạn BH và diện tích tam giác ABC. + Cho tam giác ABC nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại D và E (D khác B và E khác C). Gọi H là giao điểm của hai đường thẳng BE và CD. a) Chứng minh ADHE là tứ giác nội tiếp. b) Đường thẳng AH cắt BC tại F và cắt đường tròn (O) tại điểm P (P nằm giữa A và H). Đường thẳng DF cắt đường tròn (O) tại điểm K (K khác D). Gọi M là giao điểm của EK và BC, I là tâm đường tròn ngoại tiếp tam giác HDP. Chứng minh CE2 = BC.MC và ba điểm B, I, P thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Trong hệ trục toạ độ Oxy, cho hai đường thẳng 2 1 (d) y (m 1) x 2m (m là tham số) và 2 (d) y 3x 4. Tìm các giá trị của tham số m để các đường thẳng 1 (d) và 2 (d) song song với nhau. + Cho phương trình: 2 2 x 2 m 2 x m 4m 0 1 (với x là ẩn số). 1) Giải phương trình (1) khi m 1. 2) Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn điều kiện: 2 1 1 2 3 3 x x. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AFHE nội tiếp. 2) Tia AD cắt đường tròn (O) ở K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A). Chứng minh: MC2 = MI.MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, N, K thẳng hàng.
Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình y mx m 1 (m là tham số). Tìm giá trị của m để đường thẳng d đi qua điểm M 1 3. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O AB AC các đường cao BE CF. Gọi K là giao điểm của đường thẳng EF và BC. Đường thẳng AK cắt đường tròn O tại M (M khác A). 1. Chứng minh BFEC là tứ giác nội tiếp. 2. Chứng minh MAF MEF. 3. Chứng minh BM AC AM BC CM AB. + Cho ba số thực dương abc thay đổi thỏa mãn điều kiện 3 a b c abc. Tìm giá trị nhỏ nhất của biểu thức 5 3 3 2 a b c S a b c a.
Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Toán) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho 1003 số hữu tỷ khác 0, trong đó 4 số bất kỳ nào trong chúng cũng có thể lập thành một tỉ lệ thức. Chứng minh rằng trong các số đã cho có ít nhất 1000 số bằng nhau. + Cho hình thang ABCD nội tiếp đường tròn bán kính R = 3cm với BC = 2 cm và AD = 4cm. Lấy điểm M trên cạnh AB sao cho MB = 3MA. Gọi N là trung điểm của cạnh CD. Đường thẳng MN cắt AC tại P. a) Tính tỉ số CP/PA. b) Tính diện tích tứ giác APND. + Cho tứ giác ABCD nội tiếp đường tròn tâm O. Các đường phân giác của các góc BAD, BCD cắt nhau tại điểm K nằm trên đường chéo BD. Gọi M là trung điểm của BD, Q là giao điểm khác A của đường thẳng AM và đường tròn (O). Đường thẳng qua C song song với AD cắt tia AM tại P. N là trung điểm của CP. Chứng minh rằng: a) Hai tam giác ABQ và ADQ có diện tích bằng nhau. b) DN vuông góc với CP.
Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.