Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Anh Sơn Nghệ An

Nội dung Đề HSG cấp huyện lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Anh Sơn - Nghệ An Đề thi HSG cấp huyện Toán lớp 8 năm 2022 - 2023 phòng GD&ĐT Anh Sơn - Nghệ An Chào mừng quý thầy cô và các em học sinh lớp 8 tham gia vào đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Anh Sơn, tỉnh Nghệ An. Đề thi năm nay đầy hấp dẫn và thách thức, hãy cùng Sytu khám phá những bài toán thú vị dưới đây: 1. Tìm giá trị của n thuộc N sao cho biểu thức C = n3 - n2 + n - 1 là số nguyên tố. 2. Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P. Gọi M là điểm đối xứng với C qua P. Gọi E và F lần lượt là hình chiếu của M lên AB, AD. Chứng minh rằng: a) Tứ giác AEMF là hình chữ nhật b) Tứ giác ADBM là hình thang c) Ba điểm E, F, P thẳng hàng. 3. Cho hình thang ABCD (AB // CD). Gọi O là giao điểm hai đường chéo AC và BD. Từ A vẽ đường thẳng song song với BC cắt BD tại E. Từ B vẽ đường thẳng song song với AD cắt AC tại G. Chứng minh rằng: a) $\frac{OE}{OB} = \frac{OG}{OA}$ b) $AB^2 = EG \cdot DC$ Chúc quý thầy cô và các em học sinh có một kỳ thi thành công và đạt kết quả tốt nhất trong kỳ thi HSG cấp huyện toán lớp 8 năm 2022 - 2023.

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang
Nội dung Đề thi HSG cấp huyện lớp 8 môn Toán năm 2012 2013 phòng GD ĐT Việt Yên Bắc Giang Bản PDF - Nội dung bài viết Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Đề thi HSG cấp huyện Toán lớp 8 năm 2012 - 2013 phòng GD&ĐT Việt Yên Bắc Giang Xin gửi đến quý thầy cô và các em học sinh lớp 8 đề thi HSG cấp huyện môn Toán năm 2012 - 2013 từ phòng GD&ĐT Việt Yên, Bắc Giang. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi từ đề thi: 1. Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N. Chứng minh rằng tứ giác AEMD là hình chữ nhật. 2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh rằng: AC = 2EF. 3. Chứng minh rằng: 1/AD^2 = 1/AM^2 + 1/AN^2. 4. Tìm đa thức f(x) biết rằng: f(x) chia cho x - 2 dư 10, f(x) chia cho x - 2 dư 24, f(x) chia cho x^2 - 4 được thương là -5x và còn dư. 5. Phân tích đa thức x^4 + 2013x^2 + 2012x + 2013 thành nhân tử.