Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Đoàn Thị Điểm Hà Nội

Nội dung Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THCS Đoàn Thị Điểm Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022-2023 trường THCS Đoàn Thị Điểm Hà Nội Đề thi giữa học kì 2 (HK2) lớp 9 môn Toán năm 2022-2023 trường THCS Đoàn Thị Điểm Hà Nội Xin chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề kiểm tra giữa học kì 2 môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Đoàn Thị Điểm, quận Nam Từ Liêm, thành phố Hà Nội (mã đề 002). Đề thi bao gồm các câu hỏi thú vị như sau: + Giải bài toán sau bằng cách lập hệ phương trình: Theo kế hoạch hai tổ sản xuất 600 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 sản phẩm. Hỏi số sản phẩm được giao của mỗi tổ? + Trong phần khác, yêu cầu của đề thi là: Cho đường tròn (O) đường kính AB và điểm E nằm giữa O và A. Kẻ dây MN vuông góc với AB tại E. Trên cung nhỏ BM lấy điểm C bất kì (C khác B và M). Kẻ MF vuông góc với BC tại F. Đường thẳng NC cắt MF tại D. Câu hỏi bao gồm từ a đến c, với yêu cầu chứng minh và tìm vị trí của điểm C để diện tích tam giác BND lớn nhất. + Cuối cùng, đề thi yêu cầu tìm giá trị nhỏ nhất của biểu thức P = (a + b)/abc khi đã biết a + b + c = 4 và a, b, c đều là các số thực dương. Câu hỏi này đòi hỏi sự khéo léo trong việc áp dụng kiến thức và tính toán. Đây chính là một bài thi thú vị và đầy thách thức. Chúc quý thầy cô và các em học sinh thành công trong việc giải quyết đề thi này!

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kỳ 2 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giữa kỳ 2 Toán 9 năm học 2020 – 2021 trường THCS Sơn Đông, thị xã Sơn Tây, thành phố Hà Nội.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 phòng GDĐT Hà Đông - Hà Nội
Thứ Tư ngày 31 tháng 03 năm 2021, phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng giữa kì 2 môn Toán lớp 9 năm học 2020 – 2021. Đề thi giữa kì 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hà Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 04 bài toán, thời gian làm bài 60 phút.
Đề thi giữa HK2 Toán 9 năm 2020 - 2021 trường THCS Hoàng Hoa Thám - Hà Nội
Đề thi giữa HK2 Toán 9 năm 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề thi giữa kì 2 Toán 9 năm 2020 - 2021 trường Lương Thế Vinh - Hà Nội
Đề thi giữa kì 2 Toán 9 năm học 2020 – 2021 trường THCS & THPT Lương Thế Vinh, thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi giữa kì 2 Toán 9 năm 2020 – 2021 trường Lương Thế Vinh – Hà Nội : + Hai bạn An và Tâm được phân công chuẩn bị tài liệu cho buổi thuyết trình trước lớp về ý nghĩa của “Giờ trái đất”. Biết rằng nếu hai bạn cùng làm thì sau 2 giờ 24 phút sẽ xong. Nhưng khi làm chung được 1 giờ thì Tâm có việc bận phải về, còn một mình An làm nốt trong 2 giờ 20 phút nữa mới xong. Hỏi nếu mỗi bạn làm một mình thì sau bao lâu sẽ xong công việc? + Cho các đường thẳng (d): y = -2x + 3; (d’): y = (m – 1)x + 2m – 1 và parabol (P): y = x2. a) Tìm tọa độ giao điểm của (d) và (P). b) Tìm m biết đường thẳng (d’) song song với đường thẳng (d). Khi đó, giả sử (d’) cắt Ox tại A, cắt Oy tại B. Tính diện tích tam giác OAB. c) Tìm m để (d’) cắt (P) tại 2 điểm phân biệt D, E sao cho trung điểm I của DE nằm trên Oy. + Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ tiếp tuyến AB với (O) (B là tiếp điểm); đường thẳng d đi qua A và cắt (O) tại C, D (C nằm giữa A và D). Gọi I là trung điểm của CD. a) Chứng minh các điểm A, B, I và O cùng nằm trên một đường tròn. b) Chứng minh AC.AD = AB2. c) Qua B kẻ đường thẳng vuông góc với OA, đường thẳng này cắt (O;R) tại E. Chứng minh AB là tiếp tuyến của (O;R) và góc BEA = 1/2 góc BIE. d) Khi đường thẳng d thay đổi sao cho BDE có ba góc nhọn, gọi H là trực tâm BDE. Tính OA theo R để H chạy trên đường tròn ngoại tiếp ABE.