Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Phúc Thọ - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Phúc Thọ, thành phố Hà Nội. Trích dẫn Đề KSCL học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Phúc Thọ – Hà Nội : + Tìm đa thức A(x) biết A(x) chia cho x + 4 dư là 9, còn A(x) chia cho x – 3 dư là 2 và A(x) chia cho x2 + x – 12 được thương là x2 + 3 và còn dư. + Cho hình vuông ABCD, M là điểm bất kì trên cạnh BC, vẽ hình vuông AMHN sao cho D và N nằm cùng phía đối với đường thẳng AM. Qua M kẻ đường thẳng d song song với AB, đường thẳng AH cắt d ở E, cắt DC ở F. a. Chứng minh rằng: BM = ND và ba điểm N, D, C thẳng hàng. b. Chứng minh: Tứ giác EMFN là hình thoi. c. Chứng minh: Chu vi tam giác MFC không đổi khi M thay đổi trên cạnh BC. + Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn lại.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa
Nội dung Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa Bản PDF - Nội dung bài viết Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng mũi nhọn học sinh lớp 8 cấp huyện môn Toán cho năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa. Trích dẫn đề KSCL mũi nhọn Toán lớp 8 năm 2021-2022 phòng GD&ĐT Nông Cống - Thanh Hóa: 1. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (với n thuộc tập số tự nhiên) đều là các số chính phương thì n phải chia hết cho 40. 2. Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng chứa cạnh AB, vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Chứng minh: AB2 = 4AC.BD. Kẻ OM vuông góc với CD tại M. Chứng minh: AC = CM. Từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của đoạn thẳng MH. Tìm vị trí của điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. 3. Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1. Hãy tìm giá trị nhỏ nhất của biểu thức M. Mong rằng đề kiểm tra này sẽ giúp các em rèn luyện kiến thức và kỹ năng giải bài toán một cách thành thạo. Chúc các em thành công!