Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường Lương Ngọc Quyến Thái Nguyên

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường Lương Ngọc Quyến Thái Nguyên Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên gồm 04 trang với 30 câu trắc nghiệm và 04 câu tự luận, phần trắc nghiệm chiếm 06 điểm, phần tự luận chiếm 04 điểm, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường Lương Ngọc Quyến – Thái Nguyên : + Một dung dịch chứa 30% axit nitơric (tính theo thể tích) và một dung dịch khác chứa 55% axit nitơric. Cần phải trộn thêm bao nhiêu lít dung dịch loại 1 và loại 2 để được 100 lít dung dịch 50% axit nitơric? A. 70 lít dung dịch loại 1 và 30 lít dung dịch loại 2. B. 20 lít dung dịch loại 1 và 80 lít dung dịch loại 2 C. 30 lít dung dịch loại 1 và 70 lít dung dịch loại 2. D. 80 lít dung dịch loại 1 và 20 lít dung dịch loại 2. + Cho hình vuông ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Mệnh đề nào sau đây là sai? + Hàm số y = x^4 – x^2 + 3 là: A. hàm số vừa chẵn vừa lẻ. B. hàm số lẻ. C. hàm số không chẵn không lẻ. D. hàm số chẵn.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phạm Văn Sáng - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phước Kiển - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phước Kiển, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phước Kiển – TP HCM : + Trong mặt phẳng Oxy, cho ba điểm A(-1;-1), B(3;1), C(6;0). a) Chứng minh rằng ba điểm A, B, C lập thành một tam giác. b) Tìm toạ độ điểm E thuộc Oy sao cho tam giác ABE vuông tại B. c) Tính góc 𝐴𝐵𝐶 và chu vi của tam giác ABC. + Xác định hàm số (P): y = -x2 + bx + c, biết đồ thị của hàm số (P) đi qua điểm A(-2;0) và có trục đối xứng là x = -5. + Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = 2×2 – 4x + 2.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Phú Hòa - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.