Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT Nam Sách - Hải Dương

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Nam Sách, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 18 tháng 05 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT Nam Sách – Hải Dương : + Cho hàm số bậc nhất y = (a – 2)x – 2a + 3 có đồ thị là đường thẳng (d). Xác định giá trị của a để đường thẳng (d) cắt đường thẳng (d’): y = 2x + 1 tại điểm cách trục tung 2 đơn vị. + Một học sinh được giao phải làm 120 bài tập trong thời gian nhất định, chia đều cho các ngày. Sau khi làm được 5 ngày theo đúng kế hoạch, học sinh đó nghỉ một ngày. Để hoàn thành đúng thời gian đã định, mỗi ngày còn lại học sinh đó phải làm tăng thêm 3 bài tập so với kế hoạch ban đầu. Hỏi theo kế hoạch, mỗi ngày học sinh đó làm bao nhiêu bài tập. + Cho ba điểm A, B, C thẳng hàng theo thứ tự đó. Vẽ đường tròn tâm O đường kính BC. Kẻ tiếp tuyến AM với đường tròn. Gọi H là hình chiếu của M trên AC. Tia MH cắt đường tròn tại điểm thứ hai là N. a) Chứng minh: OA là phân giác góc MON và AN là tiếp tuyến của (O). b) Lấy điểm E thuộc cung nhỏ MN sao cho EM < EN. Đường thẳng AE cắt đường tròn tại điểm F (F không trùng với E). Gọi I là trung điểm EF, K là giao điểm của EF với MN. Chứng minh: AK.AI = AE.AF c) Đường thẳng qua E song song với AN cắt MN tại P, FP cắt AN tại Q. Chứng minh Q là trung điểm của AN.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường chuyên Quốc học Huế Xin chào quý thầy cô và các bạn học sinh! Đây là đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của trường THPT chuyên Quốc học Huế, tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào ngày 04/06/2023. Dưới đây là một số câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 của trường chuyên Quốc học Huế: 1. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), có đường cao AD và trực tâm H. Gọi E là điểm trên (O) sao cho hai dây AE và BC song song với nhau. Đường thẳng EH cắt (O) tại điểm thứ hai là F và cắt đường trung trực của BC tại M. a) Chứng minh M là trung điểm của EH và AMOF là tứ giác nội tiếp. b) Chứng minh OFA + ODF = 180. c) Gọi K là điểm đối xứng với A qua O. Tiếp tuyến của (O) tại A cắt đường thẳng FK tại T. Chứng minh hai đường thẳng TH và BC song song với nhau. 2. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = (m – 2)x + 3 và parabol (P): y = x^2. Chứng minh với mọi m, (d) luôn cắt (P) tại hai điểm phân biệt A và B nằm khác phía đối với trục tung. Gọi C và D lần lượt là hình chiếu vuông góc của A và B trên trục hoành. Tìm tất cả các giá trị của m để hai tam giác AOC và BOD có diện tích bằng nhau. 3. Trong một đường tròn (O) có bán kính bằng 46 cm, cho 2023 điểm bất kỳ. Chứng minh tồn tại vô số hình tròn có bán kính bằng 1 cm nằm trong đường tròn (O) và không chứa bất kỳ điểm nào trong 2023 điểm đã cho. Chúc các em học sinh thực hiện kỳ thi tốt và đạt kết quả cao trong cuộc thi. Hãy cố gắng học tập và rèn luyện để trở thành những tài năng trong lĩnh vực Toán học!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT An Giang Xin chào quý thầy, cô giáo và các em học sinh. Sytu xin giới thiệu đến quý vị đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh An Giang. Kỳ thi sẽ diễn ra vào ngày 03 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT An Giang: + Đồ thị bên đây biểu diễn hai hàm số f(x) = ax^2 và g(x) = -ax + b (với a và b là các số thực). Điểm chung thứ nhất của hai đồ thị có hoành độ là 1. Hãy tính hoành độ của điểm chung thứ hai của hai đồ thị. + Cho tam giác ABC có ba góc đều nhọn, BH là đường cao kẻ từ B (với H thuộc AC). Gọi D, E lần lượt là trung điểm của AB và AC, F là điểm đối xứng của điểm H qua DE. a. Chứng minh rằng tứ giác ABFH nội tiếp. b. Chứng minh FBA = EFH. c. Chứng minh rằng BF đi qua tâm đường tròn ngoại tiếp tam giác ABC. + Một nhà máy sản xuất ống thép, khi xuất xưởng các ống thép được bó lại tạo thành khối gồm 37 ống như hình vẽ. Các ống có dạng hình trụ đường kính đáy bằng nhau và bằng 10cm. Hãy tính độ dài của một sợi dây để buộc các ống thép lại với nhau.
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Yên Bái
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Yên Bái Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Yên Bái Chào mừng quý thầy cô giáo và các em học sinh! Sytu hân hạnh giới thiệu đến bạn đọc đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Yên Bái. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Yên Bái: + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = 2x - m - 2. Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt lần lượt có hoành độ x1, x2 thỏa mãn x12 + 1 = 2*2. + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE, CF (D thuộc BC, E thuộc CA, F thuộc AB). Tiếp tuyến tại A của đường tròn (O) cắt DF tại M, MC cắt (O) tại I khác C, IB cắt MD tại N. a) Chứng minh rằng MA // EF. b) Chứng minh rằng MAF cân, tứ giác AINF nội tiếp. c) Chứng minh rằng MA2 = MN.MD. d) Gọi K là giao điểm của CF và đường tròn (O). Chứng minh rằng A, N, K thẳng hàng. + Cho một đa giác đều có 23 đỉnh. Tô màu các đỉnh của đa giác bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng luôn tồn tại ba đỉnh của đa giác được tô cùng màu và tạo thành một tam giác cân. Với nội dung kỳ thi phong phú và đa dạng như vậy, chúng ta cùng học tập và chuẩn bị tốt nhất để vượt qua thử thách này. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Lào Cai
Nội dung Đề tuyển sinh chuyên môn Toán năm 2023 2024 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2023-2024 Sở GD&ĐT Lào Cai Đề tuyển sinh chuyên môn Toán năm 2023-2024 Sở GD&ĐT Lào Cai Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề chính thức của kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán năm học 2023-2024 sở Giáo dục và Đào tạo tỉnh Lào Cai. Kỳ thi sẽ diễn ra vào Chủ Nhật ngày 04 tháng 06 năm 2023. Dưới đây là một số câu hỏi trong đề tuyển sinh: Gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Tính xác suất sao cho tổng số chấm trên mặt xuất hiện của con súc sắc trong hai lần gieo không lớn hơn 6. Lúc 7 giờ 30 phút hai xe ô tô cùng xuất phát từ A đến B với vận tốc không đổi. Xe thứ hai đến B sớm hơn xe thứ nhất đúng 1 giờ. Lúc quay trở về, xe thứ nhất tăng vận tốc thêm 5km/h, xe thứ hai vẫn giữ nguyên vận tốc như lúc đi nhưng dừng ở trạm nghỉ 36 phút, do đó xe thứ hai về đến A cùng lúc với xe thứ nhất. Biết rằng quãng đường từ A đến B là 180 km. Hỏi lúc đi, xe thứ nhất đến B lúc mấy giờ? Số nguyên dương m được gọi là số tốt nếu tổng các bình phương của tất cả các ước dương của nó (không tính 1 và m) bằng 6m + 8. Chứng minh rằng nếu có hai số nguyên tố p, q phân biệt và thỏa mãn pq là số tốt thì pq + 2 là số chính phương. Hy vọng rằng các em học sinh sẽ tự tin và thành công trong kỳ thi tuyển sinh!