Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lạc Long Quân Bến Tre

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Lạc Long Quân Bến Tre Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre, đề thi gồm 16 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Lạc Long Quân – Bến Tre : + Trong mặt phẳng Oxy, nếu tam giác ABC có trọng tâm G(0;0) và các đỉnh A(1;3), B(-3;4) thì đỉnh C có tọa độ là? + Cặp vectơ nào sau đây vuông góc nhau? + Cho tam giác ABC đều cạnh bằng a. Khi đó tích vô hướng của hai vectơ AB.AC bằng?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Dương Văn Thì - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường Dương Văn Thì, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Lê Trọng Tấn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Lê Trọng Tấn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường THPT Quốc Trí - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường THPT Quốc Trí, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết.
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán 10 năm học 2019 – 2020 trường Trương Vĩnh Ký, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Trương Vĩnh Ký – TP HCM : + Tìm tập xác định của các hàm số sau. + Giải các phương trình và hệ phương trình sau. + Trong mặt phẳng Oxy, cho tam giác ABC với A(1;-2), B(-3;2), C(2;7). a) Tìm tọa độ trọng tâm G của tam giác ABC. b) Chứng tỏ tam giác ABC vuông tại B. c) Tìm tọa độ điểm D để ABCD là hình chữ nhật. d) Tìm tọa độ điểm E biết tam giác BCE có độ dài cạnh BE = 1 và độ dài cạnh CE là một số nguyên.