Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 sở GD ĐT Thanh Hóa

Nội dung Đề tham khảo giữa học kì 1 (HK1) lớp 10 môn Toán KNTTVCS năm 2023 2024 sở GD ĐT Thanh Hóa Bản PDF - Nội dung bài viết Đề tham khảo giữa học kỳ 1 lớp 10 Toán KNTTVCS năm 2023-2024 sở GD&ĐT Thanh Hóa Đề tham khảo giữa học kỳ 1 lớp 10 Toán KNTTVCS năm 2023-2024 sở GD&ĐT Thanh Hóa Xin chào quý thầy, cô giáo và các em học sinh lớp 10! Sytu xin giới thiệu đến các bạn đề tham khảo kiểm tra giữa học kỳ 1 môn Toán lớp 10 Kết Nối Tri Thức Với Cuộc Sống (KNTTVCS) năm học 2023-2024 của sở GD&ĐT Thanh Hóa. Đề thi được cấu trúc với 70% câu hỏi trắc nghiệm (tổng cộng 35 câu) và 30% câu hỏi tự luận (tổng cộng 4 câu), thời gian làm bài là 90 phút. Ma trận Đề tham khảo giữa kì 1 Toán lớp 10 KNTTVCS năm 2023-2024 sở GD&ĐT Thanh Hóa bao gồm các chủ đề sau: Tập hợp và mệnh đề (7 tiết) Mệnh đề toán học, mệnh đề phủ định, mệnh đề đảo, mệnh đề tương đương Điều kiện cần và đủ Các phép toán trên tập hợp Bất phương trình và hệ bất phương trình bậc nhất hai ẩn (6 tiết) Bất phương trình bậc nhất hai ẩn và ứng dụng Hệ bất phương trình bậc nhất hai ẩn và ứng dụng Hệ thức lượng trong tam giác và vectơ (10 tiết) Hệ thức lượng trong tam giác, định lí côsin, định lí sin, công thức tính diện tích tam giác, giải tam giác Vectơ, các phép toán và ứng dụng trong Vật lí File WORD của đề thi đã được chuẩn bị sẵn sàng cho quý thầy, cô. Hy vọng rằng đây sẽ là tài liệu hữu ích để các em ôn tập và chuẩn bị cho kỳ thi sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra giữa HK1 Toán 10 năm 2019 - 2020 trường Nguyễn Chí Thanh - TP HCM
Nhằm giúp giáo viên bộ môn và nhà trường nắm được chất lượng học tập của học sinh khối 10, vừa qua, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh đã tổ chức kiểm tra định kỳ Toán 10 giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra giữa HK1 Toán 10 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM gồm có 07 bài toán, thời gian làm bài 60 phút, đề kiểm tra được biên soạn theo dạng đề tự luận, nội dung kiểm tra thuộc các chủ đề: mệnh đề và tập hợp, hàm số bậc nhất và hàm số bậc hai, đề kiểm tra có lời giải chi tiết. [ads] Trích dẫn đề kiểm tra giữa HK1 Toán 10 năm 2019 – 2020 trường Nguyễn Chí Thanh – TP HCM : + Cho tập hợp M = {0;2;6;12;20}. Xác định tập hợp M bằng cách chỉ ra một tính chất đặc trưng cho các phần tử của nó. + Cho các tập hợp sau: A = (-5;10), B = [-1;8), C = (-10;5). Xác định và biểu diễn trên trục số các tập hợp sau: a) (A ∪ B) ∩ C. b) C \ (A ∩ B). + Cho hai tập hợp A = {1;2;3;5}, B = {1;2;4;8;16;32}. Xác định tất cả các tập hợp X sao cho X ⊂ A và X ⊂ B. + Xét tính chẵn, lẻ của các hàm số sau. + Khảo sát sự biến thiên và vẽ đồ thị hàm số y = x^2 – 4x + 3.
Đề kiểm tra giữa HK1 Toán 10 năm 2019 - 2020 trường Thăng Long - Hà Nội
Đề kiểm tra giữa HK1 Toán 10 năm học 2019 – 2020 trường THPT Thăng Long – Hà Nội mã đề 010, đề thi có 01 trang, gồm 08 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 45 phút, nội dung kiểm tra thuộc các chủ đề kiến thức Toán 10 học sinh đã được học từ tuần học thứ 1 đến tuần học thứ 8 theo phân phối chương trình. Trích dẫn đề kiểm tra giữa HK1 Toán 10 năm 2019 – 2020 trường Thăng Long – Hà Nội : + Mệnh đề nào sau đây sai? A. Nếu G là trọng tâm tam giác ABC thì MA + MB + MC = 3MG với mọi điểm M. B. Nếu ba điểm phân biệt A, B, C thẳng hàng thì AB + BC = AC. C. Nếu M là trung điểm đoạn thẳng AB thì MA + MB = 0. D. Nếu ABCD là hình bình hành thì CB + CD = -AC. [ads] + Cho hàm số y = f(x) có đồ thị trên đoạn [-3;3] như hình vẽ bên. Khẳng định nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;0). B. Hàm số đồng biến trên khoảng (-3;3). C. Hàm số đồng biến trên các khoảng (-3;-1) và (1;4). D. Hàm số đồng biến trên các khoảng (-3;-1) và (1;3). + Cho tam giác ABC và M là điểm thỏa mãn MA – MB + MC = 0. Khi đó: A. M là điểm sao cho tứ giác BAMC là hình bình hành. B. M thuộc trung trực của đoạn AB. C. M là trọng tâm tam giác ABC. D. M là điểm sao cho tứ giác ABMC là hình bình hành.
Đề kiểm tra giữa HK1 Toán 10 năm 2019 - 2020 trường Huỳnh Thúc Kháng - Hà Nội
Đề kiểm tra chất lượng giữa học kỳ 1 Toán 10 năm học 2019 – 2020 trường THPT Huỳnh Thúc Kháng – Hà Nội gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 90 phút, nội dung kiểm tra thuộc các chủ đề: mệnh đề và tập hợp, hàm số bậc nhất và hàm số bậc hai, vectơ, tích vô hướng của hai vectơ và ứng dụng. Trích dẫn đề kiểm tra giữa HK1 Toán 10 năm 2019 – 2020 trường Huỳnh Thúc Kháng – Hà Nội : + Trong mặt phẳng Oxy cho điểm A(-3;1), B là điểm đối xứng với A qua trục Oy. C là điểm nằm trên trục tung. Tìm tọa độ điểm C sao cho điểm G(0;-2/3) là trọng tâm của ABC. [ads] + Tìm a, b, c để đồ thị hàm số y = ax^2 + bx + c là đường parabol, biết parabol cắt trục tung tại điểm có tung độ bằng 2 và parabol có đỉnh là I(1;-1). + Cho đường tròn tâm O ngoại tiếp tam giác nhọn ABC. Gọi G, H lần lượt là trọng tâm và trực tâm của tam giác ABC. Chứng minh rằng O, G, H thẳng hàng.
Đề kiểm tra giữa học kì 1 Toán 10 năm 2019 - 2020 trường Nhân Chính - Hà Nội
Ngày …/10/2019, trường THPT Nhân Chính (Thanh Xuân, Hà Nội) tổ chức kiểm tra giữa học kì 1 môn Toán 10 năm học 2019 – 2020, nhằm đánh giá chất lượng học tập của học sinh. Đề kiểm tra giữa học kì 1 Toán 10 năm 2019 – 2020 trường Nhân Chính – Hà Nội gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 15 câu – chiếm 06 điểm, phần tự luận gồm 04 câu – chiếm 04 điểm, thời gian làm bài 60 phút. [ads] Trích dẫn đề kiểm tra giữa học kì 1 Toán 10 năm 2019 – 2020 trường Nhân Chính – Hà Nội : + Khẳng định nào đúng với hàm số y = |x + 1|? A. Hàm số luôn đồng biến. B. Hàm số luôn nghịch biến. C. Hàm số nghịch biến trên (-∞;-1), đồng biến trên (-1;+∞). D. Hàm số đồng biến trên (-∞;-1), nghịch biến trên (-1;+∞). + Cho hàm số y = -1/2.x^2 – x + 2. Gọi đồ thị là (P). a. Lập bảng biến thiên của hàm số? b. Tìm m để phương trình x^2 + 2x + m = 0 có hai nghiệm phân biệt cùng nhỏ hơn 2? c. Tìm tọa độ giao điểm của (P) và đường thẳng (d): y = 2x – 6. + Cho hình thang ABCD có AB // CD. Biết AB = 2CD, O là giao điểm hai đường chéo AC và BD. Hãy phân tích vectơ AO theo hai vectơ AB, AD.