Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu
Nội dung Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu Bản PDF - Nội dung bài viết Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Giới thiệu sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" Sách "Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán Trần Công Diêu" là một tài liệu giáo trình toán học cung cấp kiến thức chi tiết và cụ thể về 11 chuyên đề quan trọng trong môn Toán. Với tổng cộng 449 trang, sách bao gồm các chuyên đề sau: + Chuyên đề 1: Ứng dụng đạo hàm + Chuyên đề 2: Hàm số lũy thừa, mũ và logarit + Chuyên đề 3: Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4: Số phức + Chuyên đề 5: Hình học không gian + Chuyên đề 6: Phương pháp tọa độ trong không gian + Chuyên đề 7: Lượng giác + Chuyên đề 8: Đại số tổ hợp và xác suất + Chuyên đề 9: Giới hạn, liên tục + Chuyên đề 10: Hình học Oxy + Chuyên đề 11: Phương trình, bất phương trình đại số Đây là nguồn tư liệu hữu ích để học sinh, sinh viên củng cố kiến thức Toán một cách hiệu quả, giúp họ nắm vững và áp dụng các kiến thức lý thuyết vào thực hành trắc nghiệm. Nội dung sách được biên soạn một cách dễ hiểu, giúp người đọc tiếp cận môn học một cách tự tin và hiệu quả.
131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài
Nội dung 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bản PDF - Nội dung bài viết Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Bảng 131 bài toán ứng dụng thực tiễn có lời giải chi tiết Trần Văn Tài Trong tài liệu này, bạn sẽ được giải quyết 131 bài toán thực tế phổ biến do thầy Trần Văn Tài biên soạn. Mỗi bài toán đều được giải chi tiết để giúp bạn hiểu rõ hơn về cách giải quyết. 1. Bài toán về việc kéo đường dây điện từ trạm phát đến Con Đảo, với chi phí cụ thể cho việc đặt dây dưới nước và trên bờ. Bạn sẽ được yêu cầu tìm điểm G cách A bao nhiêu để chi phí là ít nhất. 2. Bài toán về việc cắt tấm nhôm thành hình thang để có diện tích nhỏ nhất. Bạn cần tìm tổng x + y để đạt được điều đó. 3. Bài toán liên quan đến việc chọn chiếc hộp và mạ vàng để tặng vợ vào ngày phụ nữ Việt Nam. Bạn sẽ phải tính toán chiều cao và cạnh đáy của chiếc hộp để lượng vàng là nhỏ nhất. Thông qua việc giải quyết những bài toán này, bạn sẽ được rèn luyện kỹ năng tư duy logic và giải quyết vấn đề một cách chính xác và logic. Ngoài ra, nội dung của tài liệu cũng giúp bạn áp dụng kiến thức toán học vào thực tế một cách hiệu quả.
87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh
Nội dung 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh Bản PDF - Nội dung bài viết 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh 87 bài toán thực tế có lời giải chi tiết Nguyễn Tiến Minh Trong tài liệu này, Nguyễn Tiến Minh cung cấp 87 bài toán thực tế cùng với lời giải chi tiết, giúp bạn hiểu rõ về cách giải quyết các vấn đề trong thực tế. 1. Bài toán về vay tiền ngân hàng: Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ sau 3 tháng kể từ ngày vay. Số tiền mà ông A phải trả cho ngân hàng theo cách đó được tính như sau: - Ông A bắt đầu hoàn nợ sau 1 tháng kể từ ngày vay, và hoàn nợ hai lần liên tiếp cách nhau 1 tháng. - Tính số tiền mà ông A phải trả cho ngân hàng theo cách đó. 2. Bài toán về tiêu thụ dầu: Trữ lượng dầu của nước A sẽ hết sau 100 năm nếu tiêu thụ không tăng. Với mức tăng tiêu thụ 4% mỗi năm, ta cần tính sau bao nhiêu năm trữ lượng dầu của nước A sẽ hết. 3. Bài toán về dân số: Dân số Việt Nam năm 2001 là 78.685.800 người, và tỉ lệ tăng dân số là 1,7%. Sử dụng công thức dân số, ta cần tìm năm mà dân số nước ta đạt mức 120 triệu người khi tăng dân số theo tỉ lệ đã cho. Đây là chỉ một số bài toán trong tài liệu mà Nguyễn Tiến Minh cung cấp, giúp bạn rèn luyện kỹ năng giải quyết vấn đề trong thực tế một cách hiệu quả.
Một số phương pháp giải nhanh toán trắc nghiệm bằng máy tính bỏ túi Nguyễn Vũ Thụ Nhân
Nội dung Một số phương pháp giải nhanh toán trắc nghiệm bằng máy tính bỏ túi Nguyễn Vũ Thụ Nhân Bản PDF - Nội dung bài viết Khám phá cách giải nhanh bài toán trắc nghiệm với máy tính bỏ túi Khám phá cách giải nhanh bài toán trắc nghiệm với máy tính bỏ túi Tài liệu dày 43 trang của tác giả Nguyễn Vũ Thụ Nhân cung cấp các phương pháp giải nhanh bài toán trắc nghiệm bằng việc sử dụng máy tính Casio. Tận dụng sự tiện lợi của máy tính bỏ túi, bạn có thể tính toán trực tiếp trên thiết bị để tiết kiệm thời gian và nâng cao hiệu quả học tập. Bằng cách áp dụng những mẹo giải được chia sẻ trong tài liệu, không chỉ giúp bạn giải nhanh bài toán trắc nghiệm mà còn rèn luyện kỹ năng sử dụng máy tính hiệu quả. Với sự hướng dẫn chi tiết và dễ hiểu từ tác giả, việc sử dụng máy tính Casio trở nên đơn giản và thuận lợi hơn bao giờ hết. Hãy khám phá và trải nghiệm ngay để tận dụng trọn vẹn khả năng của thiết bị thông minh này trong việc giải quyết bài toán phức tạp!