Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều

Tài liệu gồm 313 trang, hướng dẫn giải bài tập sách giáo khoa Toán 9 Cánh Diều (tập 1 và tập 2). MỤC LỤC : Chương 1 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH BẬC NHẤT 1. §1 – PHƯƠNG TRÌNH QUY VỀ PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 1. A Phương trình tích có dạng (ax + b)(cx + d) = 0 (a khác 0; c khác 0) 1. B Phương trình chứa ẩn ở mẫu 3. C Bài tập 5. §2 – PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 10. A Phương trình bậc nhất hai ẩn 10. B Hệ hai phương trình bậc nhất hai ẩn 13. C Bài tập 15. §3 – GIẢI HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 20. A Giải hệ phương trình bằng phương pháp thế 20. B Giải hệ phương trình bằng phương pháp cộng đại số 22. C Sử dụng máy tính cầm tay để tìm nghiệm của hệ phương trình bậc nhất hai ẩn 25. D Bài tập 26. §4 – BÀI TẬP CUỐI CHƯƠNG I 31. Chương 2 . BẤT ĐẲNG THỨC. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 39. §1 – BẤT ĐẲNG THỨC 39. A Nhắc lại về thứ tự trong tập hợp số thực 39. B Bất đẳng thức 40. C Bài tập 44. §2 – BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 47. A Mở đầu về bất phương trình một ẩn 47. B Bất phương trình bậc nhất một ẩn 48. C Cách giải 48. D Bài tập 52. §3 – BÀI TẬP CUỐI CHƯƠNG II 56. Chương 3 . CĂN THỨC 62. §1 – CĂN BẬC HAI VÀ CĂN BẬC BA CỦA SỐ THỰC 62. A Căn bậc hai của số thực không âm 62. B Căn bậc ba 64. C Sử dụng máy tính cầm tay để tìm căn bậc hai, căn bậc ba của một số hữu tỉ 65. D Bài tập 67. §2 – CĂN THỨC 70. A Một số phép tính về căn bậc hai 70. B Bài tập 74. §3 – CĂN THỨC BẬC HAI VÀ CĂN THỨC BẬC BA CỦA BIỂU THỨC ĐẠI SỐ 78. A Căn thức bậc hai 78. B Căn thức bậc ba 80. C Bài tập 83. §4 – MỘT SỐ PHÉP BIẾN ĐỔI CĂN THỨC BẬC HAI CỦA BIỂU THỨC ĐẠI SỐ 86. A Căn thức bậc hai của một bình phương 86. B Căn thức bậc hai của một tích 86. C Căn thức bậc hai của một thương 87. D Trục căn thức ở mẫu 88. E Bài tập 90. §5 – BÀI TẬP CUỐI CHƯƠNG III 93. Chương 4 . HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 98. §1 – TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 98. A Tỉ số lượng giác của góc nhọn 98. B Tỉ số lượng giác của hai góc phụ nhau 100. C Sử dụng máy tính cầm tay để tìm giá trị lượng giác của một góc nhọn 103. D Bài tập 104. §2 – MỘT SỐ HỆ THỨC LƯỢNG VỀ CẠNH VÀ GÓC TRONG TAM GIÁC VUÔNG 108. A Tính cạnh góc vuông theo cạnh huyền và tỉ số lượng giác của góc nhọn 108. B Tính cạnh góc vuông theo cạnh góc vuông còn lại và tỉ số lượng giác của góc nhọn 110. C Áp dụng tỉ số lượng giác của góc nhọn để giải tam giác vuông 110. D Bài tập 113. §3 – ỨNG DỤNG CỦA TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN 117. A Ước lượng khoảng cách 117. B Bài tập 120. §4 – BÀI TẬP CUỐI CHƯƠNG IV 123. Chương 5 . ĐƯỜNG TRÒN 126. §1 – ĐƯỜNG TRÒN. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN 126. A Khái niệm đường tròn 126. B Liên hệ giữa đường kính và dây của đường tròn 127. C Tính đối xứng của đường tròn 128. D Vị trí tương đối của hai đường tròn 130. E Bài tập 130. §2 – VỊ TRÍ TƯƠNG ĐỐI GIỮA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 134. A Đường thẳng và đường tròn cắt nhau 134. B Đường thẳng và đường tròn tiếp xúc nhau 134. C Đường thẳng và đường tròn không giao nhau 135. D Bài tập 136. §3 – TIẾP TUYẾN CỦA ĐƯỜNG TRÒN 139. A Nhận biết tiếp tuyến của đường tròn 139. B Tính chất của hai tiếp tuyến cắt nhau 142. C Bài tập 144. §4 – GÓC Ở TÂM – GÓC NỘI TIẾP 148. A Góc ở tâm 148. B Cung. Số đo cung 149. C Góc nội tiếp 153. D Bài Tập 155. §5 – ĐỘ DÀI CUNG TRÒN, DIỆN TÍCH HÌNH QUẠT TRÒN, DIỆN TÍCH HÌNH VÀNH KHUYÊN 159. A Độ dài cung tròn 159. B Diện tích hình quạt tròn 160. C Diện tích hình vành khuyên 163. D Bài tập 164. §6 – BÀI TẬP CUỐI CHƯƠNG V 167. Chương 6 . MỘT SỐ YẾU TỐ THỐNG KÊ VÀ XÁC SUẤT 172. §1 – MÔ TẢ VÀ BIỂU DIỄN DỮ LIỆU TRÊN CÁC BẢNG, BIỂU ĐỒ 172. A Biểu diễn dữ liệu trên bảng thống kê, biểu đồ tranh 172. B Biểu diễn dữ liệu trên biểu đồ cột, biểu đồ cột ghép 173. C Biểu diễn dữ liệu trên biểu đồ đoạn thẳng 175. D Biểu diễn dữ liệu trên biểu đồ hình quạt tròn 177. E Bài tập 180. §2 – TẦN SỐ. TẦN SỐ TƯƠNG ĐỐI 186. A Tần số. Bảng tần số. Biểu đồ tần số 186. B Tần số tương đối. Bảng tần số tương đối. Biểu đồ tần số tương đối 189. C Bài tập 192. §3 – TẦN SỐ GHÉP NHÓM. TẦN SỐ TƯƠNG ĐỐI GHÉP NHÓM 196. A Mẫu số liệu ghép nhóm 196. B Tần số ghép nhóm. Bảng tần số ghép nhóm 197. C Tần số tương đối ghép nhóm. Bảng tần số tương đối ghép nhóm. Biểu đồ tần số tương đối ghép nhóm 199. D Bài tập 202. §4 – PHÉP THỬ NGẪU NHIÊN VÀ KHÔNG GIAN MẪU. XÁC SUẤT CỦA BIẾN CỐ 207. A Phép thử ngẫu nhiên và không gian mẫu 207. B Xác suất của biến cố 208. C Bài tập 211. §5 – ÔN TẬP CHƯƠNG VI 215. Chương 7 . HÀM SỐ Y = AX2 (A KHÁC 0) 220. §1 – HÀM SỐ Y = AX2 (A KHÁC 0) 220. A Hàm số y = ax2 (a khác 0) 220. B Đồ thị hàm số y = ax2 (a khác 0) 221. C Bài tập 224. §2 – PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 228. A Định nghĩa 228. B Giải phương trình 228. C Ứng dụng của phương trình bậc hai một ẩn 232. D Sử dụng máy tính cầm tay để tìm nghiệm của phương trình bậc hai một ẩn 235. E Bài tập 235. §3 – ĐỊNH LÍ VI-ÉT 240. A Định lí Vi-ét 240. B Tìm hai số khi biết tổng và tích 242. C Bài tập 243. §4 – BÀI TẬP CUỐI CHƯƠNG VII 247. Chương 8 . ĐƯỜNG TRÒN NGOẠI TIẾP VÀ ĐƯỜNG TRÒN NỘI TIẾP 253. §1 – ĐƯỜNG TRÒN NGOẠI TIẾP TAM GIÁC. ĐƯỜNG TRÒN NỘI TIẾP TAM GIÁC 253. A Đường tròn ngoại tiếp tam giác 253. B Đường tròn nội tiếp tam giác 256. C Bài tập 258. §2 – TỨ GIÁC NỘI TIẾP ĐƯỜNG TRÒN 263. A Định nghĩa 263. B Tính chất 264. C Hình chữ nhật, hình vuông nội tiếp đường tròn 264. D Bài tập 265. §3 – BÀI TẬP CUỐI CHƯƠNG VIII 270. Chương 9 . ĐA GIÁC ĐỀU 272. §1 – ĐA GIÁC ĐỀU. HÌNH ĐA GIÁC ĐỀU TRONG THỰC TIỄN 272. A Đa giác. Đa giác lồi 272. B Đa giác đều 274. C Hình đa giác đều trong thực tiễn 275. D Bài tập 276. §2 – PHÉP QUAY 278. A Khái niệm 278. B Phép quay giữ nguyên hình đa giác đều 279. C Bài tập 280. §3 – BÀI TẬP CUỐI CHƯƠNG IX 283. Chương 10 . HÌNH HỌC TRỰC QUAN 287. §1 – HÌNH TRỤ 287. A Hình trụ 287. B Diện tích xung quanh của hình trụ 289. C Thể tích của hình trụ 290. D Bài tập 290. §2 – HÌNH NÓN 294. A Hình nón 294. B Diện tích xung quanh của hình nón 294. C Thể tích của hình nón 295. D Bài tập 296. §3 – HÌNH CẦU 299. A Hình cầu 299. B Diện tích mặt cầu 300. C Thể tích của khối cầu 301. D Bài tập 301. §4 – BÀI TẬP CUỐI CHƯƠNG X 303.

Nguồn: toanmath.com

Đọc Sách

Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn
Nội dung Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn cụ thể về cách chứng minh tứ giác nội tiếp và cách chứng minh các điểm cùng thuộc một đường tròn. Đây là một dạng bài toán thường gặp trong chương trình Hình học 9 và trong các bài toán khó hơn. Việc này giúp học sinh hiểu rõ hơn về tính chất và cách xác định tứ giác nội tiếp, cũng như cách chứng minh các điểm cùng thuộc một đường tròn. Hướng dẫn trong tài liệu được trình bày một cách dễ hiểu và chi tiết, giúp người đọc nắm bắt được bản chất của vấn đề và áp dụng vào thực hành một cách linh hoạt.
Chuyên đề góc với đường tròn
Nội dung Chuyên đề góc với đường tròn Bản PDF - Nội dung bài viết Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn: Hướng dẫn giải toán học chương 3 Hình học lớp 9 Chuyên đề góc với đường tròn là một phần quan trọng của chương trình Hình học lớp 9. Tài liệu này gồm 30 trang, cung cấp hướng dẫn chi tiết về cách giải các dạng toán liên quan đến góc trong đường tròn. Chúng ta sẽ tìm hiểu về các loại góc như góc ở tâm, góc nội tiếp, góc tạo bởi tiếp tuyến và dây cung. Trước tiên, để tính số đo của góc ở tâm, chúng ta cần biết rằng số đo của cung bị chắn bởi góc ở tâm chính là số đo của góc đó. Ngoài ra, chúng ta có thể sử dụng các kiến thức về tỉ lệ lượng giác, quan hệ đường kính và dây cung để giải các bài tập về góc ở tâm. Chủ đề tiếp theo là về góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung. Điểm chung chính là hai góc nội tiếp chắn bởi cùng một cung sẽ bằng nhau. Chúng ta cũng cần quan tâm đến các quy tắc về góc vuông, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. Chủ đề cuối cùng nói về góc có đỉnh bên trong và bên ngoài đường tròn. Khi gặp các bài toán liên quan đến góc này, chúng ta có thể tính số đo của chúng dựa vào số đo của các cung bị chắn. Quan trọng nhất là nhớ rằng số đo của góc nội tiếp bằng nửa số đo của góc ở tâm cùng chắn một cung. Cuối cùng, tài liệu còn cung cấp một số bài tập thực hành về góc với đường tròn, từ các dạng cơ bản đến phức tạp. Qua việc giải các bài tập này, học sinh sẽ củng cố kiến thức và kỹ năng giải toán, từ đó nắm vững chương trình Hình học lớp 9 chương 3. Đây thực sự là một tài liệu hữu ích giúp học sinh hiểu rõ hơn về chuyên đề góc với đường tròn và áp dụng kiến thức vào việc giải các bài tập thực tế.
Chuyên đề hệ thức lượng trong tam giác vuông
Nội dung Chuyên đề hệ thức lượng trong tam giác vuông Bản PDF - Nội dung bài viết Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề hệ thức lượng trong tam giác vuông Chuyên đề này bao gồm 26 trang tài liệu, hướng dẫn cách sử dụng các hệ thức lượng trong tam giác vuông để giải các dạng bài tập liên quan trong chương trình Hình học lớp 9 chương 1. Vấn đề 1: Hệ thức về cạnh và đường cao trong tam giác vuông Phần này bao gồm lý thuyết và bài tập về cách tính cạnh và đường cao trong tam giác vuông. Vấn đề 2: Tỉ số lượng giác của góc nhọn Phần này giải thích về công thức tỉ số lượng giác của góc nhọn, bao gồm định nghĩa, định lí, hệ thức cơ bản và so sánh các tỉ số lượng giác. Vấn đề 3: Một số hệ thức về cạnh và góc trong tam giác vuông Phần này trình bày định lí và cách giải tam giác vuông dựa trên các hệ thức về cạnh và góc trong tam giác. Vấn đề 4: Giải bài toán hệ thức lượng bằng phương pháp đại số Phần này hướng dẫn cách giải các bài toán hệ thức lượng trong tam giác vuông bằng phương pháp đại số. Vấn đề 5: Bài tập về hệ thức lượng trong tam giác vuông Phần này cung cấp các bài tập thực hành về hệ thức lượng trong tam giác vuông để học sinh rèn luyện kỹ năng giải bài tập.
Chuyên đề hệ phương trình bậc nhất hai ẩn
Nội dung Chuyên đề hệ phương trình bậc nhất hai ẩn Bản PDF - Nội dung bài viết Chuyên đề hệ phương trình bậc nhất hai ẩn Chuyên đề hệ phương trình bậc nhất hai ẩn Tài liệu này bao gồm 77 trang, hướng dẫn cách giải các dạng toán liên quan đến hệ phương trình bậc nhất hai ẩn, giúp học sinh hiểu rõ chương trình Đại số lớp 9 chương 3: Hệ hai phương trình bậc nhất hai ẩn. A. Kiến thức trọng tâm Bộ tài liệu này chủ yếu tập trung vào việc giải các dạng toán đặc biệt về hệ phương trình bậc nhất hai ẩn và cách tiếp cận vấn đề. B. Các dạng toán và phương pháp giải I. Phương pháp thế Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp thế. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp thế và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Xác định điều kiện để hệ phương trình có nghiệm thỏa mãn điều kiện đã cho. II. Phương pháp cộng đại số Dạng Toán lớp 1: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng Toán lớp 2: Giải hệ phương trình bằng phương pháp cộng đại số và quy về hệ phương trình bậc nhất hai ẩn. Dạng Toán lớp 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng Toán lớp 4: Tìm điều kiện của tham số để hệ phương trình có nghiệm thỏa mãn điều kiện cho trước. III. Sử dụng phương pháp đặt ẩn phụ Chương này tập trung vào việc sử dụng phương pháp đặt ẩn phụ để giải các bài toán liên quan đến hệ phương trình bậc nhất hai ẩn. C. Bài tập trắc nghiệm hệ phương trình bậc nhất hai ẩn Bộ tài liệu này cũng cung cấp các bài tập trắc nghiệm để học sinh ôn tập và kiểm tra kiến thức của mình về chủ đề này. D. Đáp án và hướng dẫn giải Để giúp học sinh tự kiểm tra và tự học thêm, tài liệu kèm theo đáp án và hướng dẫn chi tiết cách giải các bài tập.