Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2018 2019 trường THPT chuyên ĐHSP Hà Nội Bản PDF Sáng nay (ngày 03 tháng 12 năm 2018), trường THPT chuyên Đại học Sư Phạm – Hà Nội đã tiến hành tổ chức kỳ thi HKI Toán lớp 11, kết thúc chương trình Toán lớp 11 giai đoạn học kỳ 1. Đề thi học kỳ 1 Toán lớp 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội mã đề 485 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm 20 câu hỏi và bài toán, chiếm 50% số điểm, phần tự luận gồm 3 bài toán, chiếm 50% số điểm, với hình thức thi kết hợp này, giáo viên vừa đưa được nhiều đơn vị kiến thức vào đề thi, kiểm tra khả năng nhạy bén tìm ra kết quả, vừa đánh giá được khả năng suy luận, khả năng trình bày lời giải của học sinh, đề thi có thời gian làm bài là 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2018 – 2019 trường THPT chuyên ĐHSP – Hà Nội : + Tìm mệnh đề sai trong các mệnh đề sau: A. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một đường thẳng a chứa M và song song với (α). B. Cho đường thẳng a và b chéo nhau. Khi đó tồn tại duy nhất mặt phẳng (α) chứa a và song song với b. C. Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại duy nhất một mặt phẳng (β) chứa M và song song với (α). D. Cho đường thẳng a và mặt phẳng (α) song song với nhau. Khi đó tồn tại duy nhất một mặt phẳng (β) chứa a và song song với (α). [ads] + Cho tứ diện S.ABCD có đáy ABCD là hình thang (AB || CD). Gọi M, N và P lần lượt là trung điểm của BC, AD và SA. Giao tuyến của hai mặt phẳng (SAB) và (MNP) là? A. đường thẳng qua M và song song với SC. B. đường thẳng qua P và song song với AB. C. đường thẳng PM. D. đường thẳng qua S và song song với AB. + Cho dãy số (un) với un = (n + 2018)/(2018n + 1). Chọn khẳng định đúng trong các khẳng định sau: A. Dãy (un) bị chặn dưới nhưng không bị chặn trên. B, Dãy (un) bị chặn. C. Dãy (un) không bị chặn trên, không bị chặn dưới. D. Dãy (un) bị chặn trên nhưng không bị chặn dưới.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Thạch Thành 1 - Thanh Hóa
Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Thạch Thành 1 – Thanh Hóa gồm 4 bài toán tự luận và 20 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Cho tứ diện đều ABCD cạnh 2a. Gọi M , N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. a) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (BCD) b) Tính diện tích thiết diện của tứ diện cắt bởi mặt phẳng (MNP) + Xét trên tập xác định thì: A. hàm số lượng giác có tập giá trị là [-1; 1] B. hàm số y = cosx có tập giá trị là [-1; 1] C. hàm số y = tanx có tập giá trị là [-1; 1] D. hàm số y = cotx có tập giá trị là [-1; 1] [ads] + Khẳng định nào sau đây là đúng về phép tịnh tiến? A. Phép tịnh tiến theo véctơ v biến điểm M thành điểm M’ thì véctơ v = MM’ B. Phép tịnh tiến là phép đồng nhất nếu véctơ tịnh tiến v = 0 C. Nếu phép tịnh tiến theo véctơ v biến 2 điểm M, N thành hai điểm M’, N’ thì MNN’M’ là hình bình hành D. Phép tịnh tiến biến một đường tròn thành một elip
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Nguyễn Trãi - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Nguyễn Trãi – Hà Nội gồm 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Trong một giải cầu lông có 6 vận động viên tham dự nội dung đơn nam, số cách trao một bộ huy chương gồm 1huy chương vàng, 1 huy chương bạc và 1 huy chương đồng là? A. 120   B. 360 C .240   D. Kết quả khác + Cho hai đường thẳng (d): x – y + 1 = 0 và (d’): x – y – 5 = 0. Có bao nhiêu điểm I thoả mãn điều kiện phép đối xứng tâm I biến (d) thành (d’). [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD 1) Chứng minh rằng: Đường thẳng MN song song với mặt phẳng (SCD). 2) Tìm giao tuyến của mp(MNP) và mp(ABCD). 3) Tìm giao điểm G của đường thẳng SC và mp(MNP). Tính tỷ số SC/SG. Bạn đọc có thể tham khảo thêm các đề thi HK1 Toán 11 của các trường THPT và sở GD&ĐT trên toàn quốc tại đây.
Đề thi học kỳ I Toán 11 năm học 2017 - 2018 trường THPT Yên Mỹ - Hưng Yên
Đề thi học kỳ I Toán 11 năm học 2017 – 2018 trường THPT Yên Mỹ – Hưng Yên mã đề 162 gồm 30 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi học kỳ I Toán 11 : + Phép tịnh tiến T theo vectơ u khác 0, biến đường thẳng d thành đường thẳng d’. Nếu d’ trùng với d thì giá của vectơ u: A. không song song với d. B. trùng với d. C. song song với d. D. song song hoặc trùng với d. + Cho hình chóp S.ABCD đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, CD. a) Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b) Chứng minh MN song song với (SBC). [ads] + Với mọi x thuộc khoảng (0; π/2), so sánh cos(sinx) với cos1 thì: A. không so sánh được. B. cos(sinx) < cos1. C. cos(sinx) > cos1. D. cos(sinx) ≥ cos1.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Phước Thạnh - Tiền Giang
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Phước Thạnh – Tiền Giang gồm 28 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra ngày 18/12/2017, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 11 : + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AD. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SO với O là giao điểm của AC và BD. B. Đường thẳng đi qua S và song song AC. C. Đường thẳng đi qua S và song song BD. D. Đường thẳng SI với I là giao điểm của AB và CD. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SC. 1. Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). 2. Chứng minh OM // (SAB). [ads] + Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AD, AB, CD. Khi đó giao điểm của BC với mặt phẳng (MNP) chính là: A. Trung điểm của AC. B. Trung điểm của BC. C. Giao điểm của MP và BC. D. Giao điểm của MN và CD.