Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Lập Thạch Vĩnh Phúc

Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 cấp huyện năm 2023 - 2024 phòng GD&ĐT Lập Thạch Vĩnh Phúc Đề HSG Toán lớp 9 cấp huyện năm 2023 - 2024 phòng GD&ĐT Lập Thạch Vĩnh Phúc Xin chào quý thầy cô và các em học sinh lớp 9! Mình xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2023 - 2024 do phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi bao gồm nhiều câu hỏi thú vị và kh challenging, một trong số đó là câu hỏi về cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch. Trong câu hỏi này, bạn sẽ phải suy luận để tìm ra giá bán mỗi thùng cá thính loại I dựa trên một số điều kiện và thông tin cụ thể về số lượng bán được trong tháng 9 vừa qua. Hãy cẩn thận và logic trong việc giải quyết bài toán này. Ngoài ra, đề thi còn đưa ra một bài toán phức tạp về tam giác ABC và các điểm P, M, N trên các cạnh của tam giác đó. Bạn sẽ phải chứng minh một phát biểu về diện tích của các tam giác này, đòi hỏi sự chính xác và cẩn thận trong việc suy luận. Và cuối cùng, bài toán về đa giác đều có 2023 đỉnh cũng là một thách thức đối với các bạn. Hãy tập trung để tính toán tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên, dựa trên điều kiện và yêu cầu cụ thể được đề thi đưa ra. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và phát triển khả năng tư duy logic, sáng tạo và giải quyet vấn đề một cách hiệu quả. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An
Nội dung Đề HSG lớp 9 môn Toán vòng 3 năm 2022 2023 phòng GD ĐT Nghi Lộc Nghệ An Bản PDF - Nội dung bài viết Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Thông báo đề thi HSG lớp 9 môn Toán vòng 3 năm 2022 2023 tại Nghi Lộc, Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn đội tuyển tham gia cuộc thi học sinh giỏi cấp tỉnh môn Toán lớp 9 vòng 3 năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Nghi Lộc, tỉnh Nghệ An. Đây là cơ hội để các em thể hiện năng lực và kiến thức của mình trong môn Toán, cũng như trau dồi kỹ năng thi cử và tự tin trước những bài thi quan trọng. Đề thi được thiết kế với nhiều dạng bài tập, từ cơ bản đến nâng cao, đảm bảo phản ánh đầy đủ chương trình học của lớp 9, giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và sự linh hoạt trong suy nghĩ. Hy vọng các em sẽ cống hiến và đạt kết quả xuất sắc trong kỳ thi sắp tới. Chúc các em học sinh lớp 9 tại Nghi Lộc, Nghệ An sẽ có những bước chuẩn bị tốt nhất cho kỳ thi HSG môn Toán vòng 3 sắp tới. Hãy cố gắng, nỗ lực và tự tin để tỏa sáng trong cuộc thi và đạt được thành tích cao nhất!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA GIỚI THIỆU ĐỀ HỌC SINH GIỎI CẤP TỈNH TOÁN THCS NĂM 2022-2023 SỞ GD ĐT KHÁNH HÒA Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Khánh Hòa. Kỳ thi sẽ diễn ra vào ngày 07 tháng 12 năm 2022, đây là cơ hội cho các em học sinh thể hiện tài năng và kiến thức của mình trong môn Toán. Hãy chuẩn bị kỹ lưỡng và tự tin tham dự để có cơ hội bước tiếp trên con đường học tập và phát triển cá nhân. Chúc các em học sinh thành công trong kỳ thi sắp tới!
Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Đề HSG cấp huyện lớp 9 môn Toán năm 2022-2023 Phòng GD&ĐT Quỳnh Lưu Nghệ An Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2022-2023 của Phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 8 tháng 12 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho các số thực dương a, b, c thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức Q. 2. Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, K lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. a) Chứng minh: AD.AB = AK.AC b) Chứng minh rằng: Điểm K là điểm tiếp xúc của đường tròn ngoại tiếp tam giác KHC. 3. Cho tam giác ABC vuông cân tại A. Trên hai cạnh AB, AC lấy hai điểm M, N sao cho AM = CN. Xác định vị trí các điểm M, N trên các cạnh AB, AC sao cho đoạn MN đạt giá trị nhỏ nhất. Đây là một số câu hỏi thú vị và thách thức dành cho các em học sinh lớp 9. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới.
Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng
Nội dung Đề học sinh giỏi huyện môn Toán năm 2022 2023 phòng GD ĐT Di Linh Lâm Đồng Bản PDF - Nội dung bài viết Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Đề học sinh giỏi môn Toán năm 2022-2023 phòng GD&ĐT Di Linh, Lâm Đồng Chào quý thầy cô và các em học sinh lớp 9, đề thi chọn học sinh giỏi môn Toán cấp huyện năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng sẽ diễn ra vào ngày 10 tháng 11 năm 2022. Một số câu hỏi thú vị trong đề thi: 1. Một con Robot được thiết kế để di chuyển theo quy tắc cố định. Nếu robot xuất phát từ vị trí A0 và đi theo quy luật cụ thể để đến vị trí A2022, hỏi khoảng cách giữa điểm xuất phát và điểm đến của con Robot là bao nhiêu? 2. Một đoàn từ thiện phát 22 quyển vở cho các học sinh có hoàn cảnh khó khăn. Nếu bớt đi một phần quà thì có thể chia đều tất cả số vở cho các phần quà mà vẫn còn thừa 1 quyển. Hỏi đoàn từ thiện ban đầu có bao nhiêu quyển vở, biết rằng mỗi phần quà không quá 30 quyển? 3. Cho tam giác vuông ABC có đường cao AH, đường trung tuyến BM và đường phân giác CK cắt nhau tại E. Chứng minh rằng chiều cao hình thang tam giác AHCK bằng nửa tổng các cạnh góc vuông AC và BC. Chúc các em học sinh sẵn sàng và tự tin để làm bài thi tốt nhất!