Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền Hải Phòng

Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Ngô Quyền – Hải Phòng tổ chức kỳ thi thử Trung học Phổ thông Quốc gia năm 2020 môn Toán 11 lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng mã đề 111 gồm có 06 trang với 50 câu trắc nghiệm, học sinh có 90 phút để làm bài thi. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2020 lần 1 trường Ngô Quyền – Hải Phòng : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, O là giao điểm hai đường chéo AC và BD. Gọi I, J, K lần lượt là trung điểm các cạnh BC, AD, SC và H là một điểm trên cạnh BC, H không trùng với B. Gọi d là giao tuyến của hai mặt phẳng (SAH) và (IJK). Tìm mệnh đề sai trong các mệnh đề sau: A. d đi qua giao điểm của AH và KI đồng thời d song song với KO. B. d đi qua giao điểm của AH và IJ đồng thời d song song với SA. C. d đi qua giao điểm của AH và IJ đồng thời d song song với KO. D. d đi qua giao điểm của SH và IK đồng thời d song song với SA. + Mệnh đề nào sau đây đúng? A. Qua ba điểm xác định một và chỉ một mặt phẳng. B. Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. C. Qua ba điểm phân biệt xác định một và chỉ một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng xác định hai mặt phẳng phân biệt. [ads] + Một nhân viên được nhận vào làm việc ở tập đoàn S với mức lương 10.000.000 VND/tháng và thỏa thuận nếu hoàn thành tốt công việc thì sau một quý (3 tháng) công ty sẽ tăng cho anh thêm 500.000 VND/tháng. Hỏi sau ít nhất bao nhiêu năm thì lương của anh ta sẽ được trên 20.000.000 VND/tháng (giả thiết: nhân viên đó luôn hoàn thành tốt công việc). + Một dãy phố có bảy cửa hàng bán đồ lưu niệm. Có bảy khách hàng, mỗi người chọn vào một trong bảy cửa hàng đó một cách ngẫu nhiên. Tính xác suất để một cửa hàng có một khách vào, một cửa hàng có hai khách vào, một cửa hàng có bốn khách vào và bốn cửa hàng còn lại không có người khách nào vào. + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCL Toán 11 lần 1 năm học 2018 - 2019 trường Tiên Du 1 - Bắc Ninh
Đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh mã đề 201 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được tổ chức nhằm đánh giá chất lượng môn Toán thường xuyên đối với học sinh khối 11 và thúc đẩy các em không ngừng rèn luyện nâng cao kiến thức môn Toán, đề thi có đáp án các mã đề 201 → 208. Trích dẫn đề thi KSCL Toán 11 lần 1 năm học 2018 – 2019 trường Tiên Du 1 – Bắc Ninh : + Cho tập A gồm n phần tử (n ≥ k ≥ 1, k, n thuộc N). Mỗi kết quả của việc lấy ra k phần tử khác nhau của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là: A. Một tổ hợp chập k của n phần tử. B. Một chỉnh hợp chập n của k phần tử. C. Một chỉnh hợp chập k của n phần tử. D. Một hoán vị của k phần tử. + Cho một đa giác đều gồm 2n đỉnh (n ≥ 2, n thuộc N). Chọn ngẫu nhiên 3 đỉnh trong 2n đỉnh của đa giác. Biết xác suất 3 đỉnh được chọn tạo thành một tam giác vuông là 1/5. Trong các mệnh đề sau, mệnh đề nào đúng? [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt. B. Tồn tại bốn điểm không cùng thuộc một mặt phẳng. C. Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một điểm chung khác nữa. D. Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B - Ninh Bình lần 1
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B – Ninh Bình lần 1 được biên soạn nhằm trang bị từ sớm cho các em học sinh khối 11 các kiến thức về kỳ thi THPT Quốc gia, đồng thời các em sẽ được rèn luyện từ sớm nhằm đạt được những kết quả tốt nhất cho kỳ thi THPTQG năm 2020, đề thi có mã đề 111 gồm 04 trang với 50 câu trắc nghiệm, thời gian làm bài thi 90 phút, đề thi có đáp án các mã đề 111, 112, 113, 114. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Yên Mô B – Ninh Bình lần 1 : + Cho bốn điểm A; B; C; D không đồng phẳng. Gọi M; N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD. Giao điểm của đường thẳng CD và mặt phẳng (MNP) là giao điểm của? [ads] + Cho đa giác đều (H) có 16 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H). + Cho hai cấp số cộng hữu hạn, mỗi cấp số có 100 số hạng là: 4; 7; 10; 13; 16 … và 1; 6; 11; 16; 21 … Có bao nhiêu số hạng có mặt trong cả hai dãy số trên?
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền - Hải Phòng lần 1
Đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 mã đề 134 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2018 nhằm trang bị từ sớm cho các em học sinh khối 11 những kiến thức về kỳ thi THPT Quốc gia môn Toán để các em làm quen, nắm bắt, xác định hướng học tập phù hợp … đề thi có đáp án các mã đề 134, 245, 356, 467, 578, 689, 790, 801. Trích dẫn đề thi thử Toán 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 : + Trong các khẳng định sau , khẳng định nào đúng ? A. Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó. B. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, mặc dù không biết tập hợp tất cả các kết quả có thể có của phép thử đó. C. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, khi biết tập hợp tất cả các kết quả có thể có của phép thử đó. D. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AC, N là điểm thuộc cạnh AD sao cho AN = 2ND. O là một điểm thuộc miền trong của tam giác BCD. Khẳng định nào sau đây đúng? A. Mặt phẳng (OMN) chứa đường thẳng CD. B. Mặt phẳng (OMN) đi qua điểm A. C. Mặt phẳng (OMN) chứa đường thẳng AB. D. Mặt phẳng (OMN) đi qua giao điểm của hai đường thẳng MN và CD. + Trong kỳ thi THPT Quốc Gia môn Toán năm 2019, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 vị trí khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí.
Đề khảo sát lần 2 Toán 11 năm 2018 - 2019 trường Nguyễn Đăng Đạo - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em đề khảo sát lần 2 Toán 11 năm học 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh, đề có mã 114 gồm 06 trang với 50 câu hỏi và bài toán trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi nhằm thúc đẩy học sinh khối 11 của trường không ngừng trau dồi kiến thức và kỹ năng giải toán, đề thi có đáp án. Trích dẫn đề khảo sát lần 2 Toán 11 năm 2018 – 2019 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong các mênh đề sau, mệnh đề nào đúng? A. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau. B. Hai đường thẳng chéo nhau thì không có điểm chung. C. Hai đường thẳng không có điểm chung thì chéo nhau. D. Hai đường thẳng phân biệt không song song thì chéo nhau. [ads] + Từ độ cao 10 mét, người ta thả một quả bóng xuống mặt đất. Biết rằng sau mỗi lần chạm mặt đất quả bóng sẽ nảy lên một độ cao bằng 1/2 độ cao lần nảy lên trước đó và lần đầu tiên chạm đất quả bóng nảy lên độ cao là 8 mét. Tính quãng đường quả bóng đi được kể từ lúc thả đến thời điểm quả bóng chạm đất lần thứ 10. + Cho hình chóp S.ABCD đáy là hình thang có AD // BC. M là điểm di động trong hình thang ABCD. Qua M kẻ các đường thẳng song song SA và SB lần lượt cắt các mặt (SBC) và (SAD) tại N và P. Cho SA = a, SB = b. Tìm giá trị lớn nhất của biểu thức T = MN^2.MP.