Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải nhanh GTLN - GTNN mô đun số phức với Elip và không Elip - Lục Trí Tuyên

Tài liệu gồm 19 trang tuyển tập một số dạng và phương pháp giải bài toán GTLN – GTNN mô đun số phức, tài liệu có các ví dụ minh họa kèm lời giải chi tiết. Nội 1. Hình dạng và thông số của Elip 2. Bài toán liên quan Bài toán chung: Cho M chuyển động trên Elip (E) và một điểm A cố định. Tìm GTLN, GTNN của AM Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| Sự tương ứng ở đây gồm: + M là điểm biểu diễn z + F1, F2 tương ứng là điểm biểu diễn z1, z2 + A là điểm biểu diễn z0 3. Các dạng giải được + Bài toán 1. Phương trình (E) dạng chính tắc: x^2/a^2 + y^2/b^2 = 1 Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – c| + |z + c| = 2a hoặc |z – ci| + |z + ci| = 2a (Elip đứng). Tìm GTLN, GTNN của P = |z – z0| + Bài toán 2. Elip không chính tắc nhưng A là trung điểm của F1F2 tức A là tâm Elip Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| với đặc điểm nhận dạng z0 = (z1 + z2)/2 + Bài toán 3. Elip không có dạng chính tắc, A không là trung điểm của F1F2 nhưng A nằm trên các trục của Elip [ads] ELIP SUY BIẾN Bài toán: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a nhưng có |z1 – z2| = 2a. Tìm GTLN, GTNN của T = |z – z0| GTLN-GTNN CỦA MÔ ĐUN SỐ PHỨC KHÔNG ELIP + Dạng 1: Tìm |z| hoặc z thoả mãn phương trình z.f(|z|) = g(|z|) nghĩa là phương trình bậc nhất ẩn z chứa |z| + Dạng 2: Cho |z1| = m, |z2| = n và |az1 + bz2| = p. Tính q = |cz1 + dz2| + Dạng 3. Cho số phức z thỏa mãn |z – z0| = R. Tìm GTLN của P = a|z – z1| + b|z – z2| biết rằng z0 – z1 = -k(z0 – z2) (k > 0) và a, b ∈ R + Dạng 4. Cho số phức z thõa mãn |z + z0/z| ≤ k (k > 0) hay dạng tương đương |z^2 + z0| ≤ k|z|, (k > 0). Tìm GTLN, GTNN của T = |z| + Dạng 5. Cho số phức z thỏa mãn |z1.z – z2 = k > 0. Tìm GTLN, GTNN của T = |z – z0| + Dạng 6. Cho số phức z thỏa mãn |z – z1| = |z – z2|. Tìm GTNN của T = |z – z0| + Dạng 7. Cho hai số phức z1, z2 thỏa mãn |z1 – z1*| = R và |z2 – z2*| = |z2 – z3*|, với z1*, z2* và z3* cho trước. Tìm GTNN của T = |z1 – z2| Lời kết : Các bài toán trên có thể giải bằng phương pháp đại số bằng cách rút một ẩn theo ẩn còn lại từ giả thiết để thay vào biểu thức cần đánh giá thành hàm số dạng T = f(x). Sau đó tìm GTLN, GTNN của trên miền xác định của f(x). Các đánh giá đảm bảo chặt chẽ cần chứng tỏ có đẳng thức (dấu “=”) xảy ra. Để tránh phức tạp vấn đề tôi không trình bày ở đây. Tuy nhiên các bài toán tổng quát đã nêu đều đảm bảo điều đó.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề số phức - Nguyễn Hoàng Việt
Tài liệu gồm 52 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nắm, các dạng toán thường gặp và bài tập tự luyện chuyên đề số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4. MỤC LỤC : Chương 4 . SỐ PHỨC VÀ CÁC PHÉP TOÁN 1. §1 – NHẬP MÔN SỐ PHỨC 1. A TÓM TẮT LÝ THUYẾT 1. B CÁC DẠNG TOÁN THƯỜNG GẶP 2. + Dạng 1. Xác định số phức bằng các phép toán 3. + Dạng 2. Số phức bằng nhau 4. + Dạng 3. Điểm biểu diễn số phức 5. + Dạng 4. Lũy thừa với đơn vị ảo 7. C BÀI TẬP TỰ LUYỆN 9. §2 – PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH 13. A CÁC DẠNG TOÁN THƯỜNG GẶP 13. + Dạng 1. Phương trình bậc nhất 13. + Dạng 2. Phương trình bậc hai với hệ số thực 14. + Dạng 3. Xác định số phức bằng cách giải hệ phương trình 15. B BÀI TẬP TỰ LUYỆN 19. §3 – TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC 22. A CÁC DẠNG TOÁN THƯỜNG GẶP 22. + Dạng 1. Tọa độ điểm biểu diễn của số phức 22. + Dạng 2. Tập hợp điểm biểu diễn số phức là đường thẳng 23. + Dạng 3. Tập hợp điểm biểu diễn số phức là đường tròn 24. + Dạng 4. Tập hợp điểm biểu diễn số phức là đường Elip 27. + Dạng 5. Một số mô hình khác 28. B BÀI TẬP TỰ LUYỆN 30. §4 – MAX, MIN CỦA MÔ-ĐUN SỐ PHỨC 34. A CÁC DẠNG TOÁN THƯỜNG GẶP 34. + Dạng 1. Tìm max, min bằng phương pháp đại số 34. + Dạng 2. Tìm max, min bằng phương pháp hình học 35. B BÀI TẬP TỰ LUYỆN 41. §5 – ĐỀ ÔN TẬP CUỐI CHƯƠNG 45. A ĐỀ ÔN TẬP SỐ 1 45. B ĐỀ ÔN TẬP SỐ 2 47.
Chuyên đề Toán 12 chủ đề số phức - Lê Quang Xe
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Lê Quang Xe, hướng dẫn giải một số dạng toán điển hình trong chương trình môn Toán lớp 12 chủ đề số phức, giúp học sinh tham khảo khi học chương trình Giải tích 12 chương 4. MỤC LỤC : Chương 4. SỐ PHỨC 1. §1 – Xác định các yếu tố cơ bản, biểu diễn hình học 1. A Lý thuyết 1. B Bài tập minh họa 2. Bảng đáp án 7. §2 – Các phép toán số phức 8. A Tóm tắt lý thuyết 8. B Bài tập minh họa 8. Bảng đáp án 20. Bảng đáp án 30. §3 – Bài toán quy về giải phương trình, hệ phương trình 31. A Bài tập minh họa 31. Bảng đáp án 51. §4 – Phương trình bậc hai với hệ số thực 52. A Tóm tắt lý thuyết 52. B Bài tập minh họa 52. Bảng đáp án 64. §5 – Cực trị số phức 65. A Tóm tắt lý thuyết 65. B Ví dụ minh họa 66. Bảng đáp án 81.
Bài giảng giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững các định nghĩa về số phức và các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. + Nắm vững các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Nắm vững các bất đẳng thức cơ bản liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz. Kĩ năng : + Biết thực hiện thành thạo các định nghĩa, các phép toán trên số phức và vận dụng vào giải được một số bài toán liên quan. + Biết thực hiện thành thạo việc chuyển đổi ngôn ngữ số phức sang ngôn ngữ hình học. + Giải thành thạo các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Vận dụng linh hoạt các bất đẳng thức liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz vào giải các bài toán max, min môđun số phức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. Dạng 2 : Phương pháp đại số.
Bài giảng phương trình bậc hai với hệ số thực
Tài liệu gồm 15 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình bậc hai với hệ số thực, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững cách giải phương trình bậc hai với hệ số thực trên tập số phức. Kĩ năng : + Giải được phương trình bậc hai với hệ số thực trên tập số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng định lý Vi-ét vào giải một số bài toán chứa nhiều biểu thức đối xứng đối với hai nghiệm của phương trình. + Biết cách giải các phương trình quy về phương trình bậc hai đối với hệ số thực. + Vận dụng các kiến thức đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2 : Định lí Vi-ét và ứng dụng. Dạng 3 : Phương trình quy về phương trình bậc hai.