Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 phòng GDĐT Sơn Động - Bắc Giang

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào thứ Ba ngày 18 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một công ty chuyên sản xuất hàng may mặc phục vụ xuất khẩu theo kế hoạch phải may 2100 chiếc áo trong một thời gian quy định (số áo công ty phải may trong mỗi ngày là bằng nhau). Để đẩy nhanh tiến độ đáp ứng các đơn đặt hàng, mỗi ngày công ty đã may nhiều hơn dự định 35 chiếc áo. Do đó, công ty đã hoàn thành công việc trước thời hạn 3 ngày. Hỏi theo kế hoạch, mỗi ngày công ty phải may bao nhiêu chiếc áo? + Cho ∆ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D, E. a) Chứng minh tứ giác ABHK nội tiếp một đường tròn. b) Chứng minh rằng: HK // DE. c) Cho (O) và dây AB cố định, điểm C di chuyển trên (O) sao cho tam giác ABC có ba góc nhọn. Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp ∆CHK không đổi. + Cho đường tròn 4 O cm đường kính AB. Gọi C là trung điểm của OA, dây MN vuông góc với AB tại C. Trên cung nhỏ MB lấy điểm K, nối AK cắt MN tại H. Tích AK AH bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 - 2023 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội : + Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. + Cho tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. 1) Chứng minh AI/AK = HI/HK. 2) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. 3) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. + Trên bảng có hai số tự nhiên m và n. An và Bình chơi một trò chơi như sau: Mỗi lượt chơi, một bạn chọn một trong hai số trên bảng để xóa và viết lên bảng một số mới là hiệu không âm của số vừa xóa với một ước số tự nhiên bất kỳ của số vừa xóa. Hai bạn luân phiên thực hiện lượt chơi. Bạn đầu tiên không thể thực hiện được lượt chơi của mình là người thua cuộc, người còn lại là người thắng cuộc. Biết rằng An là người thực hiện lượt chơi đầu tiên: 1) Với m = 2022 và n = 2023, hãy chỉ ra chiến thuật chơi của An để An là người thắng cuộc. 2) Với m = 2022 và n = 1981, hãy chỉ ra chiến thuật chơi của An để An là người thắng cuộc.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào sáng Chủ Nhật ngày 19 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô và một xe máy cùng khởi hành từ địa điểm A và đi đến địa điểm B. Do vận tốc của ô tô lớn hơn vận tốc của xe máy là 20 km/h nên ô tô đến B sớm hơn xe máy 30 phút. Biết quãng đường AB dài 60 km, tính vận tốc của mỗi xe. (Giả định rằng vận tốc mỗi xe là không đổi trên toàn bộ quãng đường AB). + Quả bóng đá thường được sử dụng trong các trận thi đấu dành cho trẻ em từ 6 tuổi đến 8 tuổi có dạng một hình cầu với bán kính bằng 9,5 cm. Tính diện tích bề mặt của các quả bóng đó (lấy pi = 3,14). + Cho tam giác ABC vuông cân tại đỉnh A. Gọi E là một điểm bất kỳ trên tia CA sao cho điểm A nằm giữa hai điểm C và E. Gọi M và H lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng BC và BE. 1) Chứng minh tứ giác AMBH là tứ giác nội tiếp. 2) Chứng minh BC.BM = BH.BE và HM là tia phân giác của góc AHB. 3) Lấy điểm N sao cho M là trung điểm của đoạn thẳng AN. Gọi K là giao điểm của hai đường thẳng EN và AB. Chứng minh ba điểm H, K, M là ba điểm thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDKHCN Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục, Khoa học và Công nghệ tỉnh Bạc Liêu; kỳ thi được diễn ra vào chiều thứ Sáu ngày 10 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GDKHCN Bạc Liêu : + Tìm tất cả các giá trị của tham số m để phương trình x2 – 5x + m – 2 = 0 có hai nghiệm dương phân biệt thoả mãn hệ thức. + Cho đường tròn tâm O có đường kính MN = 2R. Vẽ đường kính AB của đường tròn (O) (A khác M và A khác N). Tiếp tuyến của đường tròn (O) tại N cắt các đường thẳng MA, MB lần lượt tại các điểm I, K. a) Chứng minh tứ giác ABKI nội tiếp. b) Khi đường kính AB quay quanh tâm O thoả mãn điều kiện đề bài, xác định vị trí của đường kính AB để tứ giác ABKI có diện tích nhỏ nhất. + Cho nửa đường tròn (O) đường kính AB, điểm C thuộc nửa đường tròn (C khác A và B). Gọi I là điểm chính giữa cung AC, E là giao điểm của AI và BC. Gọi K là giao điểm của AC và BI. a) Chứng minh rằng EK vuông góc AB. b) Gọi F là điểm đối xứng với K qua I. Chứng minh AF là tiếp tuyến của (O). c) Nếu sin BAC = 6/3. Gọi H là giao điểm của EK và AB. Chứng minh KH(KH + 2HE) = 2HE.KE.
Đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi tác giả Đặng Lê Gia Khánh). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT An Giang : + Cho phương trình bậc hai ẩn 𝑥, 𝑛 là tham số: 𝑛𝑥2 − 2(𝑛 + 1)𝑥 + 𝑛 = 0. a. Tìm 𝑛 để phương trình có hai nghiệm phân biệt 𝑥1; 𝑥2. b. Chứng minh rằng |𝑥1 − 𝑥2| ≤ 2√3 với mọi số 𝑛 nguyên dương. + Cho tam giác 𝐴𝐵𝐶 vuông tại 𝐶 (𝐴𝐶 > 𝐵𝐶), 𝐵𝐶 = 2. Biết rằng đường tròn (𝑂) qua ba điểm 𝐴, 𝐵, 𝑀 (𝑀 là trung điểm của 𝐵𝐶) cắt 𝐴𝐶 tại 𝐿 với 𝐵𝐿 là tia phân giác của góc 𝐴𝐵𝐶. a. Chứng minh 𝐶𝐴. 𝐶𝐿 = 2. b. Chứng minh 𝐴𝐵. 𝐿𝐶 = 𝐵𝐶. 𝐿𝑀. c. Tính độ dài cạnh 𝐴𝐵. + Một nông dân thu hoạch 100 trái dưa lưới có khối lượng trung bình là 1,5 kg. Trong 100 trái này có các trái dưa lưới nặng hơn 1,5 kg có khối lượng trung bình là 1,73 kg, các trái dưa lưới nhẹ hơn 1,5 kg có khối lượng trung bình là 1,33 kg và các trái dưa lưới nặng đúng 1,5 kg. a. Tìm biểu thức liên hệ giữa số trái dưa lưới theo khối lượng của chúng. b. Có ít nhất bao nhiêu trái dưa lưới nặng đúng 1,5 kg?