Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề mũ và logarit - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề mũ và logarit (phiên bản đặc biệt) do thầy Đặng Việt Đông biên soạn, tài liệu gồm 506 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề mũ và logarit giúp học sinh tự học, rèn luyện nội dung Giải tích 12 chương 2, nhằm củng cố, nâng cao các kiến thức được học tại lớp, cũng như dùng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia 2019 môn Toán. Nội dung tài liệu chuyên đề mũ và logarit – Đặng Việt Đông: CHUYÊN ĐỀ MŨ – LŨY THỪA + Tính giá trị của biểu thức chứa lũy thừa. + Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa. + So sánh các lũy thừa. + Tính chất lũy thừa. CHUYÊN ĐỀ HÀM SỐ LŨY THỪA + Tập xác định của hàm số chứa hàm lũy thừa. + Đạo hàm hàm số lũy thừa. + Khảo sát sự biến thiên và đồ thị hàm số lũy thừa. + Tính giá trị hàm số. CHUYÊN ĐỀ LOGARIT + Tính giá trị biểu thức chứa lô-ga-rít. + Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. + So sánh các biểu thức lô-ga-rít. + Min, max biểu thức chứa lôgarit. CHUYÊN ĐỀ HÀM SỐ MŨ – LOGARIT + Tập xác định của hàm số mũ, hàm số lôgarit. + Tính đạo hàm hàm số mũ, hàm số lôgarit. + Tính đơn diệu, tiệm cận, cực trị. + Tính chất hàm số mũ, hàm số lôgarit. + Đồ thị hàm số mũ, hàm số lôgarit và các bài toán liên quan. + Tính giá trị hàm số mũ, hàm số lôgarit. + Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lôgarit một biến số. + Các bài toán lãi suất – trả góp. + Các bài toán thực tế liên môn. [ads] CHUYÊN ĐỀ PHƯƠNG TRÌNH MŨ  + Phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarit hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ PHƯƠNG TRÌNH LÔGARIT + Phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarit hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ BẤT PHƯƠNG TRÌNH MŨ + Bất phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarít hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ BẤT PHƯƠNG TRÌNH LÔGARIT  + Bất phương trình cơ bản. + Phương pháp đưa về cùng cơ số. + Phương pháp đặt ẩn phụ. + Phương pháp lôgarít hóa, mũ hóa. + Phương pháp hàm số, đánh giá. CHUYÊN ĐỀ MIN, MAX MŨ – LÔGARIT NHIỀU BIẾN  + Phương pháp hàm đặc trưng. + Phương pháp khác. Những điểm mới trong tài liệu chuyên đề mũ và logarit (phiên bản đặc biệt) so với các tài liệu về mũ và logarit đã chia sẻ trước đó của thầy Đặng Việt Đông (xem thêm trên ): + Tất cả các bài toán trắc nghiệm mũ và logarit trong tài liệu này đều có đáp án và lời giải chi tiết. + Tài liệu bổ sung thêm nhiều dạng toán mới về mũ và logarit, nhất là các dạng toán vận dụng cao được “phát sinh” trong các đề thi thử Toán THPT Quốc gia 2018 vừa qua. + Kiến thức và bài tập mũ – logarit được sắp xếp theo thứ tự từ thấp đến cao dựa vào mức độ nhận thức: nhận biết, thông hiểu, vận dụng và vận dụng bậc cao, điều này giúp học sinh thuộc các đối tượng có học lực khác nhau có thể dễ dàng tìm kiếm phần nội dung phù hợp với bản thân dù số trang tài liệu là khá lớn. + Phần bài tập và lời giải được tách riêng, thuận lợi cho việc in ấn, giao bài tập của giáo viên.

Nguồn: toanmath.com

Đọc Sách

Bài giảng phương trình lôgarit và bất phương trình lôgarit
Tài liệu gồm 34 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình lôgarit và bất phương trình lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : 1. Biết cách giải các dạng phương trình lôgarit. 2. Biết cách giải các dạng bất phương trình lôgarit. Kĩ năng : 1. Giải được một số phương trình mũ và phương trình lôgarit đơn giản bằng các phương pháp đưa về cùng cơ số, lôgarit hóa, mũ hóa, đặt ẩn phụ, phương pháp hàm số. 2. Nhận dạng được các phương trình và bất phương trình lôgarit. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương trình lôgarit. – Bài toán 1. Biến đổi về dạng phương trình cơ bản. – Bài toán 2. Phương trình theo một hàm số lôgarit. – Bài toán 3. Phương pháp hàm số. – Bài toán 4. Mũ hóa hoặc lấy lôgarit hai vế. – Bài toán 5. Đặt ẩn phụ. – Bài toán 6. Phương trình tích. – Bài toán 7. Phương trình lôgarit chứa tham số. Dạng 2 : Bất phương trình lôgarit. – Bài toán 1. Biến đổi về dạng bất phương trình cơ bản. – Bài toán 2. Bất phương trình theo một hàm số lôgarit. – Bài toán 3. Phương pháp hàm số. – Bài toán 4. Mũ hóa hoặc lấy lôgarit hai vế. – Bài toán 5. Đặt ẩn phụ. – Bài toán 6. Bất phương trình tích. – Bài toán 7. Bất phương trình lôgarit chứa tham số.
Bài giảng phương trình mũ và bất phương trình mũ
Tài liệu gồm 35 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mũ và bất phương trình mũ, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết được cách giải một số dạng phương trình mũ. + Biết được cách giải một số dạng bất phương trình mũ. Kĩ năng : + Giải được một số phương trình mũ và bất phương trình mũ đơn giản bằng các phương pháp đưa về cùng cơ số, logarit hóa, đặt ẩn phụ, tính chất của hàm số. + Nhận dạng được các loại phương trình mũ và bất phương trình mũ. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Phương trình mũ. – Bài toán 1. Biến đổi về dạng phương trình cơ bản. – Bài toán 2. Phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Phương trình chứa tham số. Dạng 2 : Bất phương trình mũ. – Bài toán 1. Biến đổi về dạng bất phương trình cơ bản. – Bài toán 2. Bất phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Bất phương trình chứa tham số.
Bài giảng hàm số mũ và hàm số lôgarit
Tài liệu gồm 39 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hàm số mũ và hàm số lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Nắm vững khái niệm và tính chất của hàm số mũ, hàm số lôgarit. + Trình bày và áp dụng được công thức tìm đạo hàm của hàm số mũ, hàm số lôgarit. + Nhận biết dạng đồ thị của hàm số mũ, hàm số lôgarit. Kĩ năng : + Biết cách vận dụng tính chất của các hàm số mũ, hàm số lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit. + Biết cách vẽ đồ thị các hàm số mũ, hàm số lôgarit. + Tìm được đạo hàm của hàm số mũ, hàm số lôgarit. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đạo hàm, sự biến thiên của hàm số. – Bài toán 1. Tìm đạo hàm của các hàm số mũ – hàm số lôgarit. – Bài toán 2. Xét tính đồng biến, nghịch biến của hàm số mũ và hàm số lôgarit. Dạng 2 : Tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 2. Tìm tham số m để hàm số xác định trên khoảng cho trước. Dạng 3 : Đồ thị hàm số. Dạng 4 : Bài tập lãi suất.
Bài giảng lôgarit
Tài liệu gồm 21 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết khái niệm và tính chất của lôgarit. + Biết các quy tắc lôgarit và công thức đổi cơ số. + Biết các khái niệm lôgarit thập phân, lôgarit tự nhiên. Kĩ năng : + Biết vận dụng định nghĩa để tính một số biểu thức chứa lôgarit đơn giản. + Biết vận dụng các tính chất của lôgarit vào các bài toán biến đổi, tính toán các biểu thức chứa lôgarit. I. LÍ THUYẾT TRỌNG TÂM 1. Khái niệm lôgarit. 2. Tính chất. 3. Quy tắc tính lôgarit. a. Lôgarit của một tích. b. Lôgarit của một thương. c. Lôgarit của một lũy thừa. 4. Đổi cơ số. 5. Lôgarit thập phân – lôgarit tự nhiên. a. Lôgarit thập phân. b. Lôgarit tự nhiên. II. CÁC DẠNG BÀI TẬP Dạng 1 : Biến đổi biểu thức lôgarit. – Bài toán 1. Chứng minh đẳng thức. – Bài toán 2. Tính giá trị của biểu thức không có điều kiện. Rút gọn biểu thức. – Bài toán 3. Tính giá trị biểu thức theo một biểu thức đã cho. Dạng 2 : Tính giá trị của biểu thức chưa lôgarit theo một biểu thức đã cho.