Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức

Nội dung 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Bản PDF - Nội dung bài viết Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Sản phẩm 123 bài toán hàm số bậc nhất và đường thẳng Lương Tuấn Đức Trong lĩnh vực Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, hàm số và đồ thị là những dạng toán cơ bản nhưng rất thú vị. Chúng có phạm vi rộng lớn, liên kết chặt chẽ với nhiều phần khác của toán học sơ cấp và hiện đại. Ở Việt Nam, kiến thức về hàm số và đồ thị đóng vai trò quan trọng trong giáo dục, được giảng dạy trong chương trình sách giáo khoa từ lớp 7, tiếp tục qua các lớp 9, 10, 11, 12 cùng với các kiến thức liên quan. Các kỹ năng về hàm số, đồ thị được rèn luyện đều đặn, bài bản và có hệ thống để hữu ích không chỉ trong môn Toán mà còn phục vụ cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học. Trong chương trình Đại số lớp 9 THCS, hàm số và đồ thị đóng vai trò quan trọng trong các đề thi kiểm tra, đề thi tuyển sinh lớp 10 THPT và các trường chuyên. Các bài toán về hàm số và đồ thị tạo cơ sở cho kiến thức chính trong các lớp 10, 12, bao gồm cả hàm số bậc cao và bài toán hình học giải tích. Trong tác phẩm về hàm số và đồ thị, tác giả tập trung vào các bài toán khảo sát biến thiên, vẽ đồ thị của hàm số bậc nhất (đường thẳng), vị trí tương đối giữa các đường thẳng, cũng như vị trí tương đối giữa đường thẳng và đường cong. Ngoài ra, có những bài toán kết nối với yếu tố lượng giác và hình học giải tích. Đồng thời, tác giả cố gắng mở rộng, nâng cao từng bài toán theo nội dung chính về hàm số bậc THPT. Điều này giúp phát triển tư duy hàm số, tư duy hình học giải tích cho học sinh THCS và tạo cơ sở cho các kỳ thi đầy cam go như kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia. Tóm lại, việc nghiên cứu đường thẳng và hàm số không chỉ giúp học sinh hiểu sâu hơn về toán học mà còn giúp họ áp dụng kiến thức vào các môn khoa học khác một cách sáng tạo và linh hoạt.

Nguồn: sytu.vn

Đọc Sách

200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán
Tài liệu gồm 185 trang, được tổng hợp bởi thầy giáo Nguyễn Chí Thành, tuyển tập 200 bài tập rút gọn biểu thức và bài toán liên quan trong các đề thi tuyển sinh vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn tài liệu 200 bài tập rút gọn biểu thức và bài toán liên quan trong đề thi vào 10 môn Toán: + Cho biểu thức A và B. a) Tính giá trị biểu thức B khi x = 25. b) Biết P = B : A. Chứng minh rằng: P. c) Tìm giá trị nguyên của x để P nhận giá trị nguyên. + Cho biểu thức A. a) Rút gọn biểu thức A. b) Tính giá trị của x để A = 4/5. c) Tìm giá trị lớn nhất của biểu thức A. + Cho hai biểu thức A và B với x >= 0 và x khác 1. a) Tính giá trị của biểu thức A khi x = 4. b) Rút gọn biểu thức C = A + B. c) So sánh giá trị của biểu thức C với 1.
Tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán
Tài liệu gồm 567 trang, tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán, có đáp án / đáp số và lời giải chi tiết. Trích dẫn tài liệu tuyển tập 400 bài toán hình học trong các đề thi vào lớp 10 môn Toán: + Cho đường tròn (O) và đường kính AB R cm 2 10. Gọi C là trung điểm OA. Qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ MB, H là giao điểm AK và MN. Chứng minh: a) Tứ giác BHCK nội tiếp, AMON là hình thoi. b) 2 AK AH R và tính diện tích hình quạt tao bởi OM, OB và cung MB. c) Trên KN lấy I sao cho KI KM, chứng minh NI KB. d) Tìm vị trí điểm K để chu vi tam giác MKB lớn nhất. + Cho nửa đường tròn (O;R) đường kính AB. Bán kính OC AB. Điểm E thuộc đoạn OC. Tia AE cắt nửa đường tròn (O) tại M. Tiếp tuyến của nửa đường tròn tại M cắt OC tại D. Chứng minh: a) Tứ giác OEMB nội tiếp và MDE cân. b) Gọi BM cắt OC tại K. Chứng minh BM BK không đổi khi E di chuyển trên OC và tìm vị trí của E để MA MB 2. c) Cho 0 ABE 30 tính S MOB và chứng minh khi E di chuyển trên OC thì tâm đường tròn ngoại tiếp CME thuộc một đường thẳng cố định. + Cho ABC đều nội tiếp (O;R) kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ BK AM tại K, BK cắt CM tại E, R cm 6. Chứng minh: a) Tứ giác ABHK nội tiếp và MBE cân. b) Tứ giác BOCD là hình thoi và gọi BE cắt (O) tại N và tính S MON. c) Tìm vị trí của M để chu vi MBE lớn nhất và tìm quỹ tích điểm E khi M di chuyển trên cung nhỏ AC.
Tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán
Tài liệu gồm 67 trang, được biên soạn bởi tác giả Nguyễn Nhất Huy (Tạp Chí Và Tư Liệu Toán Học), tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán, có lời giải chi tiết. Mục lục tài liệu tuyển tập một số bài toán bất đẳng thức trong kì thi tuyển sinh lớp 10 chuyên Toán: 1 Các kiến thức cơ bản về bất đẳng thức. 1.1 Một số kí hiệu sử dụng trong tài liệu (Trang 2). 1.2 Bất đẳng thức AM – GM (Trang 2). 1.3 Bất đẳng thức Cauchy – Schwarz (Trang 2). 1.4 Điều kiện có nghiệm của phương trình (Trang 2). 2 Các bài toán bất đẳng thức trong các kì thi tuyển sinh vào lớp 10 chuyên Toán. 3 Giới thiệu một số phương pháp chứng minh bất đẳng thức khác. 3.1 Tam thức bậc hai và phương pháp miền giá trị (Trang 38). 3.2 Phương pháp đổi biến PQR và bất đẳng thức Schur (Trang 45). 3.3 Phân tích tổng bình phương SOS và phân tích Schus – SOS (Trang 51). 4 Các bài toán luyện tập.
Toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 - 2020
THCS. giới thiệu đến thầy, cô giáo và các em học sinh tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 do thầy Vũ Ngọc Thành tổng hợp, tài liệu gồm 312 trang phân loại các câu hỏi và bài tập trong các đề Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020 thành các chuyên đề, có lời giải chi tiết. Các chuyên đề trong tài liệu toàn cảnh đề Toán tuyển sinh lớp 10 trường chuyên năm học 2019 – 2020 gồm: + Chuyên đề 1: Căn bậc hai và bài toán liên quan (Trang 2). + Chuyên đề 2: Bất đẳng thức – giá trị lớn nhất & giá trị nhỏ nhất (Trang 29). + Chuyên đề 3: Phương trình (Trang 62). + Chuyên đề 4: Hệ phương trình (Trang 104). + Chuyên đề 5: Hàm số (Trang 131). + Chuyên đề 6: Giải bài toán bằng cách lập phương trình – hệ phương trình – bài toán thực tế (Trang 150). + Chuyên đề 7: Hình học (Trang 158). + Chuyên đề 8: Số học (Trang 262). + Chuyên đề 9: Biểu thức (Trang 304).