Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2022 - 2023 trường THPT Trần Phú - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 năm học 2022 – 2023 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi mã đề 101 hình thức trắc nghiệm 100% với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, không kể thời gian giao đề; đề thi có đáp án. Trích dẫn Đề thi HSG Toán 11 năm 2022 – 2023 trường THPT Trần Phú – Vĩnh Phúc : + Cho hình chóp S.ABCD có BC // AD và BC AD AB b 2 1. Tam giác SAD đều. Mặt phẳng (P) đi qua điểm M trên cạnh AB và song song với các đường thẳng SA và BC, đồng thời cắt CD, SC, SB theo thứ tự tại N, P, Q. Đặt AM x x b. Giá trị lớn nhất của diện tích thiết diện của hình chóp với mặt phẳng (P) bằng? + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có góc ACB tù. Hai điểm D(4;1), E(2;-1) lần lượt là chân đường cao kẻ từ đỉnh A và B của tam giác ABC. Trung điểm của cạnh AB là điểm N(1;2), trung điểm của cạnh AC là điểm M nằm trên đường thẳng có phương trình 2 6 50 x y. Tìm tung độ của điểm M, biết điểm M có hoành độ lớn hơn 3? + Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O, M là trung điểm SB. Mặt phẳng (P) đi qua M và song song với các đường thẳng SO, AD. Thiết diện của (P) và hình chóp là hình gì. A. Hình thoi B. Hình thang C. Hình bình hành D. Hình vuông.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 11 năm 2023 - 2024 trường THPT Tiên Lãng - Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT năm học 2023 – 2024 trường THPT Tiên Lãng, thành phố Hải Phòng; kỳ thi được diễn ra vào ngày 20 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 11 năm 2023 – 2024 trường THPT Tiên Lãng – Hải Phòng : + Trong một hộp kín đựng 2024 tấm thẻ như nhau được đánh số từ 1 đến 2024. Lấy ngẫu nhiên ba tấm thẻ trong hộp. Tính xác suất để lấy được ba tấm thẻ mà ba số ghi trên ba tấm thẻ đó lập thành một cấp số cộng. + Trong mặt phẳng với hệ trục toạ độ Oxy cho hình vuông ABCD tâm I. Gọi M N J lần lượt là trung điểm các đoạn thẳng AI CD BN. Biết phương trình đường thẳng MJ là 2 7 0 y và N 56. Biết đỉnh C có hoành độ lớn hơn 3. Tìm tọa độ đỉnh C của hình vuông ABCD. + Cho hàm số 3 2 x y x có đồ thị C. Chứng minh rằng đường thẳng 1 2 d y x m luôn cắt đồ thị C tại hai điểm A B phân biệt. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB.