Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán cuối năm 2021 2022 phòng GD ĐT thành phố Vinh Nghệ An

Nội dung Đề KSCL lớp 9 môn Toán cuối năm 2021 2022 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm 2021-2022Phần 1: Phương trình và hệ phương trìnhPhần 2: Giải bài toán bằng phương trìnhPhần 3: Hình học Bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm 2021-2022 Chào mừng quý thầy cô và các em học sinh lớp 9! Dưới đây là bộ đề khảo sát chất lượng môn Toán lớp 9 cuối năm học 2021-2022 của phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Phần 1: Phương trình và hệ phương trình 1. Cho phương trình: \(x^2 - 4x + m + 5 = 0\) a) Tìm giá trị tham số m để phương trình có nghiệm. b) Tìm giá trị tham số m để phương trình có hai nghiệm dương thỏa mãn Phần 2: Giải bài toán bằng phương trình 2. Để chuẩn bị cho SEA Games 31, Ban tổ chức cần 3000 tình nguyện viên đáp ứng trình độ tiếng Anh B1. Nếu yêu cầu tăng lên B2, số lượng TNV nam giảm 20%, nữ giảm 10% và tổng số TNV chỉ còn 2580 người. Hỏi đã tuyển chọn được bao nhiêu TNV nam và nữ theo tiêu chuẩn ban đầu? Phần 3: Hình học 3. Từ điểm A bên ngoài đường tròn (O) với hai tiếp tuyến AB, AC và cát tuyến AEF. Gọi I là giao điểm của AO và BC, K là trung điểm của EF a) Chứng minh tứ giác ABOC nội tiếp. b) Tính độ dài cung tròn BEC khi OB = 3cm và BOC = 120. c) Chứng minh rằng đường thẳng đi qua K song song với BF cắt BC tại M thì KMC = KEC. d) Chứng minh N là trung điểm của AB khi tia FM cắt AB tại N. Hy vọng bộ đề sẽ giúp các em ôn tập và chuẩn bị tốt cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng Toán 9 năm 2020 - 2021 sở GDĐT Thanh Hóa
Sáng Chủ Nhật ngày 25 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2020 – 2021. Đề thi khảo sát chất lượng Toán 9 năm 2020 – 2021 sở GD&ĐT Thanh Hóa được biên soạn theo hình thức đề thi 100% tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 120 phút. Trích dẫn đề thi khảo sát chất lượng Toán 9 năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = 1/2×2 và đường thẳng (d): y = 2x – m + 1 (với m là tham số). 1) Tìm m để đường thẳng (d) đi qua điểm A(-1;3). 2) Tìm m để (d) cắt (P) tại hai điểm phân biệt có tọa độ sao cho. + Cho đường tròn (O) đường kính AB. Vẽ tia tiếp tuyến Ax với đường tròn (O), trên tia Ax lấy điểm M bất kì khác A. Qua M vẽ cát tuyến MCD với đường tròn (O) (C nằm giữa M và D; C, D không cùng thuộc nửa mặt phẳng bờ AB; MO nằm giữa MA và MC). Kẻ OH vuông góc với CD tại H. 1) Chứng minh tứ giác AOHM nội tiếp. 2) Chứng minh: AM.AD = AC.DM. 3) Tia MO cắt các tia BC và BD lần lượt ở I và K. Chứng minh: AI = BK. + Cho x, y là các số thực tùy ý. Tìm giá trị lớn nhất của: A.
Đề kiểm tra Toán 9 năm 2020 - 2021 trường chuyên KHTN - Hà Nội (Vòng 1 - Đợt 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra kiến thức môn Toán lớp 9 năm học 2020 – 2021 trường  THPT chuyên KHTN – Hà Nội (Vòng 1 – Đợt 2); kỳ thi được diễn ra ngày 24 tháng 04 năm 2021.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Phù Lương - Bắc Ninh
Đề khảo sát chất lượng Toán 9 lần 2 năm học 2020 – 2021 trường THCS Phù Lương – Bắc Ninh gồm 02 phần: phần trắc nghiệm gồm 40 câu, chiếm 05 điểm, thời gian làm bài 60 phút; phần tự luận gồm 05 câu, chiếm 05 điểm, thời gian làm bài 60 phút; đề thi có đáp án mã đề 132, 209, 357, 485, 570, 628, 743. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Phù Lương – Bắc Ninh : + Cho tam giác MNP, O là giao điểm các đường trung trực của tam giác. H, I, K theo thứ tự là trung điểm của các cạnh NP, PM, MN. Biết OH < OI = OK. Khi đó: A. Điểm O nằm trong tam giác MNP B. Điểm O nằm trên cạnh của tam giác MNP. C. Điểm O nằm ngoài tam giác MNP. D. Cả A, B, C đều sai. + Cho tam giác MNP và hai đường cao MH, NK. Gọi (O) là đường tròn nhận MN làm đường kính. Khẳng định nào sau đây không đúng? A. Bốn điểm M, N, H, K không cìng nằm trên đường tròn (O). B. Ba điểm M, N, K cùng nằm trên đường tròn (O). C. Ba điểm M, N, H cùng nằm trên đường tròn (O). D. Bốn điểm M, N, H, K cùng nằm trên đường tròn (O). + Trên mặt phẳng tọa độ Oxy, cho điểm M(2; 5). Khi đó đường tròn (M; 5): A. cắt trục Ox và tiếp xúc với trục Oy. B. tiếp xúc với trục Ox và cắt trục Oy. C. cắt hai trục Ox, Oy D. không cắt cả hai trục.
Đề khảo sát Toán 9 năm 2020 - 2021 phòng GDĐT Thanh Xuân - Hà Nội
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, phòng Giáo dục và Đào tạo UBND quận Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra khảo sát học sinh lớp 9 môn Toán năm học 2020 – 2021. Đề khảo sát Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề khảo sát Toán 9 năm 2020 – 2021 phòng GD&ĐT Thanh Xuân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Trong quý I, hai tổ làm được 900 sản phẩm. Quý II, tổ một làm vượt mức 25%, tổ hai làm vượt mức 20% so với quý I, nên cả hai tổ làm được nhiều hơn 200 sản phẩm. Hỏi trong quý I, mỗi tổ làm được bao nhiêu sản phẩm? + Trong một buổi huấn luyện, một tàu ngầm ở trên mặt biển bắt đầu lặn xuống và di chuyển theo một đường thẳng tạo với mặt nước biển một góc 21°. Hỏi khi tàu chuyển động theo hướng đó và di chuyển được 250m thì tàu ở độ sâu bao nhiêu so với mặt nước biển? (kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc với nhau. M là điểm bất kì trên cung nhỏ BC (M khác B, M khác C), đường thẳng AM cắt đường kính CD tại E. Hạ CH vuông góc với AM tại H. 1) Chứng minh tứ giác AOHC nội tiếp. 2) Chứng minh OH // DM. 3) Chứng minh tâm đường tròn ngoại tiếp tam giác CME nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ BC.