Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Vectơ trong không gian, quan hệ vuông góc - Trần Quốc Nghĩa

Với mục đích bổ trợ cho học sinh khối 11 trong quá trình học chương trình Hình học 11 chương 3, thầy Trần Quốc Nghĩa đã biên soạn và chia sẻ tài liệu vectơ trong không gian, quan hệ vuông góc. Tài liệu gồm 101 trang với đầy đủ lý thuyết, dạng toán và bài tập chủ đề vectơ trong không gian, quan hệ vuông góc, sẽ giúp các em dễ dàng tiếp cận và học tốt hơn hình học không gian. Khái quát nội dung tài liệu vectơ trong không gian, quan hệ vuông góc – Trần Quốc Nghĩa: Vấn đề 1 . VÉCTƠ TRONG KHÔNG GIAN + Dạng 1. Tính toán véctơ. + Dạng 2. Chứng minh đẳng thức véctơ. + Dạng 3. Quan hệ đồng phẳng. + Dạng 4. Cùng phương và song song. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 1 BÀI TẬP TRẮC NGHIỆM Vấn đề 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC + Dạng 1. Chứng minh vuông góc. + Dạng 2. Góc giữa hai đường thẳng. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 2 BÀI TẬP TRẮC NGHIỆM Vấn đề 3 . ĐƯỜNG THẲNG VUÔNG GÓC MẶT PHẲNG + Dạng 1. Chứng minh đường thẳng vuông góc với mặt phẳng. + Dạng 2. Góc giữa đường thẳng và mặt phẳng. + Dạng 3. Thiết diện qua một điểm cho trước và vuông góc với trước. + Dạng 4. Điểm cố định – Tìm tập hợp điểm. BÀI TẬP CƠ BẢN NÂNG CAO VẤN ĐỀ 3 BÀI TẬP TRẮC NGHIỆM Vấn đề 4 . HAI MẶT PHẲNG VUÔNG GÓC + Dạng 1. Góc giữa hai mặt phẳng. + Dạng 2. Chứng minh hai mặt phẳng vuông góc. + Dạng 3. Thiết diện chứa đường thẳng a và vuông góc với mặt phẳng (α). + Dạng 4. Hình lăng trụ – Hình lập phương – Hình hộp. BÀI TẬP TRẮC NGHIỆM Vấn đề 5 . KHOẢNG CÁCH + Dạng 1. Khoảng cách từ một điểm đến đường thẳng, mặt phẳng. + Dạng 2. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TRẮC NGHIỆM ĐÁP ÁN TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

429 câu trắc nghiệm chuyên đề quan hệ vuông góc trong không gian - Phạm Văn Huy
Tài liệu gồm 45 trang, gồm các bài toán trắc nghiệm thuộc chuyên đề quan hệ vuông góc trong không gian phân loại theo chủ đề, đáp án nằm cuối tài liệu. Trích dẫn tài liệu : + Cho hình tứ diện OABC với OA, OB, OC đôi một vuông góc và OA = OB = OC. Gọi I là trung điểm của BC, J là trung điểm AI, Gọi K, L lần lượt là hình chiếu vuông góc của O lên AI và của J lên OC. Chọn khẳng định đúng trong các khẳng định sau? A. Đoạn vuông góc chung của AI và OC là JLQ B. Đoạn vuông góc chung của AI và OC là IC C. Đoạn vuông góc chung của AI và OC là OK D. Các khẳng định trên đều sai [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường thẳng vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường thẳng này và vuông góc với đường thẳng kia B. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kỳ thuộc a tới mp(P) C. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm M thuộc mặt phẳng (P) chứa a và song song với b đến một điểm N bất kỳ trên b D. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kỳ trên mặt phẳng này đến mặt phẳng kia + Trong các mệnh đề sau, mệnh đề nào đúng? A. Đường vuông góc chung của hai đường thẳng chéo nhau thì vuông góc với mặt phẳng chứa đường thẳng này và song song với đường thẳng kia B. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó vuông góc với cả hai đường thẳng đó C. Đường vuông góc chung của hai đường thẳng chéo nhau thì nằm trong mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng kia D. Một đường thẳng là đường vuông góc chung của hai đường thẳng chéo nhau nếu nó cắt cả hai đường thẳng đó