Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Rút gọn biểu thức đại số và các bài toán liên quan

Bài toán rút gọn biểu thức đại số và các bài toán liên quan là dạng câu hỏi không thể thiếu trong các đề thi tuyển sinh vào lớp 10 môn Toán, đây là bài toán không khó, học sinh có thể làm tốt bài toán này nếu nắm vững các công thức biến đổi. Tài liệu dưới đây sẽ cung cấp cho các em phương pháp giải 12 dạng bài tập rút gọn biểu thức đại số và các bài toán có liên quan. Dạng 1 . Rút gọn biểu thức. Ngoài việc rèn kỹ năng thực hiện các phép tính trong bài toán rút gọn. Học sinh hay quên hoặc thiếu điều kiện xác định của biến x (ĐKXĐ gồm điều kiện để các căn thức bậc hai có nghĩa, các mẫu thức khác 0 và biểu thức chia (nếu có) khác 0). Dạng 2 . Tính giá trị của biểu thức A khi x = m ( với m là số hoặc biểu thức chứa x). Nếu m là biểu thức chứa căn x = m ( bằng số), trước tiên phải rút gọn; nếu m là biểu thức có dạng căn trong căn thường đưa về hằng đẳng thức để rút gọn; nếu m là biểu thức ta phải đi giải phương trình tìm x. Trước khi tính giá trị của biểu thức A, học sinh thường quên xét xem m có thỏa mãn ĐKXĐ hay không rồi mới được thay vào biểu thức đã rút gọn để tính. Dạng 3 . Tìm giá trị của biến x để A = k (với k là hằng số hoặc là biểu thức chứa x). Thực chất đây là việc giải phương trình. Học sinh thường quên khi tìm được giá trị của x không xét xem giá trị x đó có thỏa mãn ĐKXĐ của A hay không. Dạng 4 . Tìm giá trị của biến x để A ≥ k (hoặc A ≤ k, A > k, A < k …) trong đó k là hằng số hoặc là biểu thức chứa x. Thực chất đây là việc giải bất phương trình. Học sinh thường mắc sai lầm khi giải bất phương trình thường dùng tích chéo hoặc sử dụng một số phép biến đổi sai. Dạng 5 . So sánh biểu thức A với một số hoặc một biểu thức. Thực chất đây là việc đi xét hiệu của biểu thức A với một số hoặc một biểu thức rồi so sánh hiệu đó với số 0. [ads] Dạng 6 . Chứng minh biểu thức A ≥ k (hoặc A ≤ k, A > k, A < k) với k là một số. Thực chất đây là việc đưa về chứng minh đẳng thức hoặc bất đẳng thức. Ta xét hiệu A – k rồi xét dấu biểu thức. Dạng 7 . Tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: chia tử thức cho mẫu thức, rồi tìm giá trị của biến x để mẫu thức là ước của phần dư (một số). Học sinh thường quên kết hợp với điều kiên xác định của biểu thức. Dạng 8 . Tìm giá trị của biến x là số thực, số bất kì để biểu thức A có giá trị nguyên. Học sinh thường nhầm lẫn cách làm của dạng này với dạng tìm giá trị của biến x là số nguyên, số tự nhiên để biểu thức A có giá trị nguyên. Cách làm: sử dụng ĐKXĐ để xét xem biểu thức A nằm trong khoảng giá trị nào, rồi tính giá trị của biểu thức A và từ đó tìm giá trị của biến x. Dạng 9 . Tìm giá trị của tham số để phương trình hoặc bất phương trình có nghiệm. Học sinh cần biết cách tìm điều kiện để phương trình hoặc bất phương trình có nghiệm. Dạng 10 . Tìm giá trị của biến x để A = |A| (hoặc A < |A|, A ≥ |A| …). Nếu |A| > A, suy ra A < 0. Nếu |A| = A, suy ra A ≥ 0. Dạng 11 . Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức A. Học sinh cần biết cách tìm cực trị của phân thức ở một số dạng tổng quát. Học sinh cần đưa biểu thức rút gọn A về một trong những dạng sau để tìm cực trị. Học sinh thường mắc sai lầm khi chỉ chứng minh biểu thức A ≥ k (hoặc A ≤ k) chưa chỉ ra dấu bằng nhưng đã kết luận cực trị của biểu thức A. Dạng 12 : Tìm giá trị lớn nhất, giá trị nhỏ nhất của A khi x thuộc N. Học sinh chú ý bài toán thường cho dưới dạng điều kiện xác định x ≥ a, x ≠ b, trong đó a < b. Ta phải tính giá trị với x là các số tự nhiện thuộc [a;b) và trường hợp x là số tự nhiên lớn hơn b.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI
Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 29 trang, tóm tắt lý thuyết, phân dạng và tuyển chọn các bài tập chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông, hỗ trợ học sinh trong quá trình học chương trình Hình học 9 chương 1 bài số 1. A. LÝ THUYẾT B. DẠNG BÀI MINH HỌA I. Bài toán và các dạng bài và phương pháp. Dạng 1 : Chứng minh hệ thức. Phương pháp giải: Sử dụng định lý Ta-lét và hệ thức lượng đã học biến đổi các vế, đưa về dạng đơn giản để chứng minh. Dạng 2 : Tìm độ dài đoạn thẳng, số đo góc. Phương pháp giải: + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. Dạng 3 . Bài toán thực tế liên quan. III. Trắc nghiệm rèn phản xạ. III. Phiếu bài tự luyện. IV. Hướng dẫn giải.
Chuyên đề giải bài toán bằng cách lập phương trình
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải bài toán bằng cách lập phương trình, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 8. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Các bước giải bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: + Chọn ẩn số và đặt điều kiện cho ẩn số. + Biểu diễn các dữ kiện chưa biết qua ẩn số. + Lập phương trình biểu thị tương quan giữa ẩn số và các dữ kiện đã biết. Bước 2. Giải phương trình. Bước 3. Đối chiếu nghiệm của phương trình với điều kiện của ẩn số (nếu có) và với đề bài để đưa ra kết luận. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Bài toán về năng suất lao động. Năng suất được tính bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành. Dạng 2 . Toán về công việc làm chung, làm riêng. Thường coi khối lượng công việc là 1 đơn vị. Năng suất 1 + Năng suất 2 = Tổng năng suất. Dạng 3 . Toán về quan hệ các số. Dạng 4 . Toán có nội dung hình học. Dạng 5 . Toán chuyển động. Quãng đường = Vận tốc x Thời gian. Dạng 6 . Toán về chuyển động trên dòng nước. Vận tốc tàu khi xuôi dòng = Vận tốc của tàu khi nước yên lặng + Vận tốc dòng nước. Vận tốc tàu khi ngược dòng = Vận tốc của tàu khi nước yên lặng – Vận tốc dòng nước. Dạng 7 . Các dạng khác. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO – PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN
Chuyên đề phương trình quy về phương trình bậc hai
Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình quy về phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Giải phương trình trùng phương. Xét phương trình trùng phương: ax^4 + bx2 + c = 0 (a ≠ 0). + Bước 1. Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai: at^2 + bt + c = 0 (a ≠ 0). + Bước 2. Giải phương trình bậc hai ẩn t từ đó ta tìm được các nghiệm của phương trình trùng phương đã cho. Dạng 2 . Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau: + Bước 1. Tìm điều kiện xác định của ẩn. + Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3. Giải phương trình bậc hai nhận được ở bước 2. + Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. Dạng 3 . Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có các bước giải như sau: + Bước 1. Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4 . Giải phương trình bằng phương pháp đặt ẩn phụ. + Bước 1. Đặt điều kiện xác định (nếu có). + Bước 2. Đặt ẩn phụ, đặt điều kiện của ẩn phụ (nếu có) và giải phương trình theo ẩn mới. + Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định và kết luận. Dạng 5 . Phương trình chứa biểu thức trong dấu căn. Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6 . Một số dạng khác. Ngoài các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế … để giải phương trình. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO