Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Thừa Thiên Huế

Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán chuyên năm 2021 2022 sở GD ĐT Thừa Thiên Huế Bản PDF Đề thi học sinh giỏi tỉnh Toán lớp 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 12 chuyên năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Với p là số nguyên dương, đặt S(p). a) Chứng minh S(7) không chia hết cho 7. b) Tìm tất cả các số nguyên tố p (p < 2022) sao cho S(p) không chia hết cho p. + Cho tam giác ABC nội tiếp đường tròn (O) và ngoại tiếp đường tròn (I). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Gọi D, E, F lần lượt là các tiếp điểm của đường tròn (I) với các cạnh BC, CA, AB. Các điểm X, Y lần lượt là giao điểm của đường thẳng EF với các đường thẳng MN, CI. Gọi L là điểm chính giữa của cung BC chứa điểm A của đường tròn (O). a) Chứng minh các đường thẳng AD, BE, CF đồng quy. b) Chứng minh BY CY và Y nằm trên đường thẳng MP. c) Chứng minh đường thẳng LI đi qua trung điểm của đoạn XY. + Một hình chữ nhật gồm hai ô vuông đơn vị kích thước 2×1 hoặc 1×2 được gọi là một domino. Một mô hình là một cách đặt các domino lên một bảng vuông nxn (n nguyên dương) ô vuông đơn vị sao cho mỗi domino phủ đúng 2 ô của bảng và không có một ô nào được phủ bởi 2 domino khác nhau (tức là các domino không xếp chồng lên nhau). Ta gọi một domino là “liên quan” đến một hàng (hoặc một cột) nếu nó phủ ít nhất một ô của hàng (hoặc cột) đó. Gọi trị số của một hàng (hoặc một cột) là số các domino “liên quan” đến hàng (hoặc cột) đó. Một mô hình được gọi là cân bằng nếu tồn tại số nguyên dương k sao cho mỗi hàng và mỗi cột của nó đều có trị số là k. Chẳng hạn tồn tại mô hình cân bằng cho bảng 3×3 với k = 1 (xem mô hình như hình bên). a) Chứng minh rằng tồn tại các mô hình cân bằng với n. b) Tồn tại mô hình cân bằng với n = 2021 hay không? Nếu có, hãy tìm số domino ít nhất cần thiết để có thể thiết lập được mô hình cân bằng cho bảng đó.

Nguồn: sytu.vn

Đọc Sách

Đề chọn HSG Toán năm 2019 - 2020 cụm trường THPT huyện Việt Yên - Bắc Giang
Ngày 13 tháng 01 năm 2020, cụm các trường THPT huyện Việt Yên, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán năm học 2019 – 2020. Đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang mã đề 101, đề gồm có 04 trang với 40 câu trắc nghiệm (chiếm 14 điểm) và 03 câu tự luận (chiếm 06 điểm), thời gian học sinh làm bài thi là 120 phút, chưa kể thời gian giám thị coi thi phát đề. Trích dẫn đề chọn HSG Toán năm 2019 – 2020 cụm trường THPT huyện Việt Yên – Bắc Giang : + Một người gửi 8 triệu đồng vào ngân hàng với lãi suất 0,6 % một tháng. Kể từ lần gửi đầu tiên cứ sau hai tháng người đó lại gửi vào ngân hàng với số tiền 8 triệu đồng. Hỏi sau đúng hai năm kể từ lần gửi đầu tiên số tiền người đó thu được cả gốc và lãi là bao nhiêu ? biết ngân hàng tính lãi trên số tiền có thực tế ở trong ngân hàng, trong suốt quá trình gửi người đó không rút ra một đồng nào (kết quả làm tròn đến hàng nghìn). A. 101,876 triệu đồng. B. 103,852 triệu đồng. C. 106,385 triệu đồng. D. 110,686 triệu đồng. + Cho khối chóp S.ABCD có đáy là hình bình hành, điểm M thuộc cạnh SC sao cho SM = kMC. Mặt phẳng (P) qua AM và song song với BD chia khối chóp thành hai khối đa diện (H) và (E), (H) là khối đa diện chứa đỉnh C. Gọi VH, VE lần lượt là thể tích của (H) và (E). Tìm k để VH = 6VE. [ads] + Trong không gian Oxyz, cho tam giác ABC có A(3;1;2), B(-1;5;4) và điểm C thuộc trục hoành. Điểm M(a;b;c) nằm trên cạnh AB sao cho diện tích tam giác MAC bằng 3 lần diện tích tam giác MBC. Mệnh đề nào dưới đây đúng? + Cho hình trụ có tâm của hai đáy là O, O’. Hai điểm A, B lần lượt nằm trên hai đường tròn (O), (O’) sao cho AB = 4a, góc giữa AB và OO’ bằng 30°. Khoảng cách giữa AB và OO’ bằng a√3. Diện tích toàn phần của hình trụ bằng? + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 9 lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau từng đôi một, trong đó có 3 chữ số lẻ và 2 chữ số chẵn. Tính tổng các số lập được.
Đề giao lưu HSG Toán 12 năm 2019 - 2020 cụm các trường THPT tỉnh Bắc Ninh
Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán 12 để chuẩn bị cho kỳ thi HSG Toán 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận.
Đề HSG Toán cấp trường lần 1 năm 2019 - 2020 trường Tiên Du 1 - Bắc Ninh
Nhằm tuyển chọn các em học sinh lớp 12 học giỏi môn Toán vào đội tuyển học sinh giỏi Toán của nhà trường, vừa qua, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi Toán cấp trường lần thứ nhất năm học 2019 – 2020. Đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề HSG Toán cấp trường lần 1 năm 2019 – 2020 trường Tiên Du 1 – Bắc Ninh : + Cho hàm số y = x^3 + 2x^2 + x + 1 có đồ thị (C) và điểm M thuộc đồ thị (C) có hoành độ a. Gọi S là tập hợp tất cả các giá trị nguyên của a ∈ Z ∩ [-2020;2020] để tiếp tuyến tại M của (C) vuông góc với một tiếp tuyến khác của (C). Tìm số phần tử của S. + Cho hình vuông C1 có cạnh bằng a. Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông C2 (như hình vẽ). Từ hình vuông C2 lại tiếp tục làm như trên … ta nhận được dãy các hình vuông C1, C2, C3 … Cn, …. Gọi Si là diện tích của hình vuông Ci với i ∈ {1;2;3;…}. Đặt T = S1 + S2 + … + Sn + …. Biết T = 32/3, tính a? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy AD // BC. Gọi M là điểm thay đổi nằm trong hình thang ABCD. Từ M kẻ các đường thẳng song song với SA, SB lần lượt cắt các mặt phẳng (SBC) và (SAD) tại N và P. Biết diện tích tam giác SAB bằng S0 (không đổi). Tính giá trị lớn nhất của diện tích tam giác MNP theo S0 khi M là điểm thay đổi. + Trong không gian, cho tam giác đều ABC có cạnh bằng 11. Ba mặt cầu bán kính 3, 4 và 6 có tâm đặt lần lượt tại các đỉnh A, B và C của tam giác ABC. Có bao nhiêu mặt phẳng cùng tiếp xúc với cả ba mặt cầu đó? + Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Một thiết diện qua đỉnh tạo với đáy một góc 60 độ. Diện tích của thiết diện này bằng?
Đề chọn học sinh giỏi Toán 12 THPT năm 2019 - 2020 sở GDĐT Thái Bình
Vừa qua, sở Giáo dục và Đào tạo tỉnh Thái Bình đã tổ chức kỳ thi chọn học sinh giỏi (HSG) môn Toán lớp 12 THPT năm học 2019 – 2020. Đề chọn học sinh giỏi Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Thái Bình với 4 mã đề: 103, 203, 303, 403; đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút, không kể thời gian giao đề, đề gồm 06 trang, thí sinh làm bài vào phiếu trả lời trắc nghiệm, đề thi có đáp án. Trích dẫn đề chọn học sinh giỏi Toán 12 THPT năm 2019 – 2020 sở GD&ĐT Thái Bình : + Một bể bơi ban đầu có dạng là hình hộp chữ nhật ABCD.A’B’C’D’. Sau đó người ta làm lại mặt đáy như hình vẽ. Biết rằng A’B’MN và MNEF là các hình chữ nhật, (MNEF // A’B’C’D’), AB = 20m, AD = 50m, AA’ = 1,8m, MF = 30m, DE = 1,5m. Thể tích của bể sau khi làm lại mặt đáy là? + Cho hai hàm số: y = x^2 – 2x và y = x^3 – x^2 – (m + 4)x + m – 1 (với m là tham số). Có bao nhiêu giá trị của m để đồ thị của hai hàm số đã cho cắt nhau tại ba điểm phân biệt và ba giao điểm đó nằm trên một đường tròn bán kính bằng √5? [ads] + Cho tam giác ABC vuông tại A, AB = 6cm, AC = 3cm. M là một điểm di động trên cạnh BC (M khác B và C); gọi H, K lần lượt là hình chiếu vuông góc của M trên AB và AC. Cho hình chữ nhật AHMK quay xung quanh cạnh AH, khối trụ được tạo thành có thể tích lớn nhất là? + Gọi S là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập S. Tính xác suất để số lấy được có chữ số đứng sau lớn hơn chữ số đứng liền trước. + Cho hàm số y = x^3 – 3x^2 – mx + m^2 – 10 (m là tham số). Có bao nhiêu giá trị của m để đồ thị hàm số cắt trục Ox tại ba điểm phân biệt có hoành độ lập thành cấp số cộng?