Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận

Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2020 2021 sở GD ĐT Bình Thuận Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Thuận; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho đường tròn (O) có đường kính AB cố định, M là điểm di động trên (O) sao cho M khác với các điểm A, B và OM không vuông góc với AB. Các tiếp tuyến của (O) tại A và M cắt nhau tại C. Gọi (I) là đường tròn đi qua M và tiếp xúc với đường thẳng AC tại C. Đường thẳng OC cắt lại (I) tại điểm thứ hai là E. a. Chứng minh E là trung điểm của OC. b. Gọi CD là đường kính của (I). Chứng minh đường thẳng qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên (O). + Cho hai số nguyên dương k và n sao cho k =< n. Xét tất cả các tập hợp con gồm k phần tử của tập hợp {1;2;…;n}. Trong mỗi tập hợp con ta chọn ra phần tử nhỏ nhất. Chứng minh tổng tất cả các phần tử được chọn bằng k+1Cn+1. + Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = (x – 11)√(x2 + 9) trên đoạn [0;4].

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc
Đề thi chọn HSG Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Vĩnh Phúc gồm 10 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cường độ động đất M được cho bởi công thức M = logA – logA0 trong đó A là biên độ rung chấn tối đa, A0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất kia? [ads] + Trong không gian cho 2n điểm phân biệt (n > 4, n ∈ N), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt. + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m – 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức (3k1 + 1)^2.(3k2 + 1)^2 đạt giá trị nhỏ nhất.
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.